
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Locking
Part 2, Chapter 7

7/2

Overview

• Introduction

• Spin Locks

– Test-and-Set & Test-and-Test-and-Set

– Backoff lock

– Queue locks

• Concurrent Linked List

– Fine-grained synchronization

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• Hashing

– Fine-grained locking

– Recursive split ordering

7/3

memory

object object

Concurrent Computation

• We started with…

• Multiple threads

– Sometimes called processes

• Single shared memory

• Objects live in memory

• Unpredictable asynchronous delays

• Previously, we focused on fault-tolerance

– In Chapter 1, we discussed theoretical results

– In Chapter 2, we discussed practical solutions with a focus on efficiency

• In this chapter, we focus on efficient concurrent computation!

– Focus on asynchrony and not on explicit failures

7/4

Example: Parallel Primality Testing

• Challenge

– Print all primes from 1 to 1010

• Given

– Ten-core multiprocessor

– One thread per processor

• Goal

– Get ten-fold speedup (or close)

• Naïve Approach

– Split the work evenly

– Each thread tests range of 109

…

… 109 1010 2·109 1

P0 P1 P9

Problems with
this approach?

7/5

Issues

• Higher ranges have fewer primes

• Yet larger numbers are harder to test

• Thread workloads

– Uneven

– Hard to predict

• Need dynamic load balancing

• Better approach

– Shared counter!

– Each thread takes a number

17

18

19

7/6

Counter counter = new Counter(1);

void primePrint() {
 long j = 0;
 while(j < 1010) {
 j = counter.getAndIncrement();
 if(isPrime(j))
 print(j);
 }
}

Procedure Executed at each Thread

Shared counter object

Increment counter & test
if return value is prime

7/7

Counter Implementation

public class Counter {

 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

What’s the problem with
this implementation?

7/8

time

value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

Problem

7/9

Counter Implementation

public class Counter {

 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

These steps must
be atomic!

Recall: We can use Read-Modify-
Write (RMW) instructions!

We have to guarantee
mutual exclusion

7/10

Model

• The model in this part is slightly more complicated

– However, we still focus on principles

• What remains the same?

– Multiple instruction multiple data (MIMD) architecture

– Each thread/process has its own code and local variables

– There is a shared memory that all threads can access

• What is new?

– Typically, communication runs over a shared bus
(alternatively, there may be several channels)

– Communication contention

– Communication latency

– Each thread has a local cache

memory

I.e., multiprocessors

7/11

cache

Bus Bus

cache cache

1
shared
memory

Local
variables

Counter counter = new Counter(1);

void primePrint() {
 long j = 0;
 while(j < 1010) {
 j = counter.getAndIncrement();
 if(isPrime(j))
 print(j);
 }
}

Model: Where Things Reside

E.g., the shared
counter is here

Code

7/12

Revisiting Mutual Exclusion

• We need mutual exclusion for our counter

• We are now going to study mutual exclusion from a different angle

– Focus on performance, not just correctness and progress

• We will begin to understand how performance depends on our software
properly utilizing the multiprocessor machine’s hardware,
and get to know a collection of locking algorithms!

• What should you do if you can’t get a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

Our focus

7/13

CS

Resets lock
upon exit

spin
lock

critical
section

..
.

Basic Spin-Lock

Lock introduces
sequential bottleneck
 No parallelism!

Lock suffers
from contention

Huh?

7/14

Reminder: Test&Set

• Boolean value

• Test-and-set (TAS)

– Swap true with current value

– Return value tells if prior value was true or false

• Can reset just by writing false

• Also known as “getAndSet”

7/15

Reminder: Test&Set

public class AtomicBoolean {
 private boolean value;

 public synchronized boolean getAndSet() {
 boolean prior = this.value;
 this.value = true;
 return prior;
 }

}

Get current value and set
value to true

java.util.concurrent.atomic

7/16

Test&Set Locks

• Locking

– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS

– If result is false, you win

– If result is true, you lose

• Release lock by writing false

7/17

Test&Set Lock

public class TASLock implements Lock {
 AtomicBoolean state = new AtomicBoolean(false);

 public void lock() {
 while (state.getAndSet()) {}
 }

 public void unlock() {
 state.set(false);
 }
}

Keep trying until
lock acquired

Lock state is AtomicBoolean

Release lock by resetting state to false

7/18

Performance

• Experiment

– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?

ti

m
e

threads

7/19

Test&Test&Set Locks

• How can we improve TAS?

• A crazy idea: Test before you test and set!

• Lurking stage

– Wait until lock “looks” free

– Spin while read returns true (i.e., the lock is taken)

• Pouncing state

– As soon as lock “looks” available

– Read returns false (i.e., the lock is free)

– Call TAS to acquire the lock

– If TAS loses, go back to lurking

7/20

Test&Test&Set Lock

public class TTASLock implements Lock {
 AtomicBoolean state = new AtomicBoolean(false);

 public void lock() {
 while (true) {
 while(state.get()) {}
 if(!state.getAndSet())
 return;
 }
 }

 public void unlock() {
 state.set(false);
 }
}

Wait until lock looks free

Then try to acquire it

7/21

Performance

• Both TAS and TTAS do the same thing (in our old model)

• So, we would expect basically the same results

• Why is TTAS so much better than TAS? Why are both far from ideal?

threads

ideal

ti
m

e

TAS lock TTAS lock

7/22

Opinion

• TAS & TTAS locks

– are provably the same (in our old model)

– except they aren’t (in field tests)

• Obviously, it must have something to do with the model…

• Let’s take a closer look at our new model and try to find a reasonable
explanation!

7/23

Bus-Based Architectures

Bus

cache

memory

cache cache

Random access memory
(tens of cycles)

Shared bus
• Broadcast medium
• One broadcaster at a time
• Processors (and memory) “snoop”

Per-processor caches
• Small
• Fast: 1 or 2 cycles
• Address and state information

7/24

Jargon Watch

• Load request

– When a thread wants to access data, it issues a load request

• Cache hit

– The thread found the data in its own cache

• Cache miss

– The data is not found in the cache

– The thread has to get the data from memory

7/25

Load Request

• Thread issues load request and memory responds

cache

memory

cache cache

data data

data…?

Bus

Got your data
right here!

7/26

Another Load Request

Bus Bus

memory

cache cache data

data

data…? I got data!

• Another thread wants to access the same data. Get a copy from the cache!

7/27

Modify Cached Data

• Both threads now have the data in their cache

• What happens if the red thread now modifies the data…?

memory

cache data

What’s up with the other copies?

data

data

Bus

7/28

Cache Coherence

• We have lots of copies of data

– Original copy in memory

– Cached copies at processors

• Some processor modifies its own copy

– What do we do with the others?

– How to avoid confusion?

7/29

Write-Back Caches

• Accumulate changes in cache

• Write back when needed

– Need the cache for something else

– Another processor wants it

• On first modification

– Invalidate other entries

– Requires non-trivial protocol …

• Cache entry has three states:

– Invalid: contains raw bits

– Valid: I can read but I can’t write

– Dirty: Data has been modified

– Intercept other load requests

– Write back to memory before reusing cache

7/30

Invalidate

• Let’s rewind back to the moment when the red processor updates its
cached data

• It broadcasts an invalidation message  Other processor invalidates its
cache!

Bus Bus

memory

cache data

data

cache

Cache loses
read

permission

7/31

Invalidate

Bus

memory

cache data

data

• Memory provides data only if not present in any cache, so there is no need
to change it now (this is an expensive operation!)

• Reading is not a problem  The threads get the data from the red process

cache

7/32

Mutual Exclusion

• What do we want to optimize?

1. Minimize the bus bandwidth that the spinning threads use

2. Minimize the lock acquire/release latency

3. Minimize the latency to acquire the lock if the lock is idle

7/33

TAS vs. TTAS

• TAS invalidates cache lines

• Spinners

– Always go to bus

• Thread wants to release lock

– delayed behind spinners!!!

• TTAS waits until lock “looks” free

– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released

– Invalidation storm …

This is why TAS
performs so poorly…

Huh?

7/34

Local Spinning while Lock is Busy

Bus

memory

busy busy busy

busy

• While the lock is held, all contenders spin in their caches, rereading
cached data without causing any bus traffic

7/35

Bus

On Release

memory

free

free

invalid invalid

TAS! TAS!

• The lock is released. All spinners take a cache miss and call Test&Set!

7/36

Time to Quiescence

• Every process experiences a cache miss

– All state.get() satisfied sequentially

• Every process does TAS

– Caches of other processes are invalidated

• Eventual quiescence (“silence”) after
acquiring the lock

• The time to quiescence increases
linearly with the number of processors for a bus architecture!

P1

P2

Pn

ti

m
e

threads

7/37

Mystery Explained

threads

ideal

ti
m

e

TAS lock TTAS lock

• Now we understand why the TTAS lock performs much better than the
TAS lock, but still much worse than an ideal lock!

• How can we do better?

7/38

Introduce Delay

• If the lock looks free, but I fail to get it, there must be lots of contention

• It’s better to back off than to collide again!

• Example: Exponential Backoff

• Each subsequent failure doubles expected waiting time

2d 4d
waiting time

d spin lock

7/39

Exponential Backoff Lock

public class Backoff implements Lock {
 AtomicBoolean state = new AtomicBoolean(false);

 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while(state.get()) {}
 if (!lock.getAndSet())
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }
 }

 // unlock() remains the same

}

Fix minimum delay

Back off for
random duration

Double maximum
delay until an upper

bound is reached

7/40

Backoff Lock: Performance

• The backoff lock outperforms the TTAS lock!

• But it is still not ideal…

threads

ideal

ti
m

e

TAS lock TTAS lock

Backoff lock

7/41

Backoff Lock: Evaluation

• Good

– Easy to implement

– Beats TTAS lock

• Bad

– Must choose parameters carefully

– Not portable across platforms

• How can we do better?

• Avoid useless invalidations

– By keeping a queue of threads

• Each thread

– Notifies next in line

– Without bothering the others

7/42

ALock: Initially

flags

next

T F F F F F F F

idle

• The Anderson queue lock (ALock) is an array-based queue lock

• Threads share an atomic tail field (called next)

7/43

ALock: Acquiring the Lock

flags

next

T F F F F F F F

acquired

• To acquire the lock, each thread atomically increments the tail field

• If the flag is true, the lock is acquired

• Otherwise, spin until the flag is true

The lock
is mine!

7/44

ALock: Contention

flags

next

T F F F F F F F

acquired

• If another thread wants to acquire the lock, it applies get&increment

• The thread spins because the flag is false

acquiring

7/45

ALock: Releasing the Lock

flags

next

T T F F F F F F

released

• The first thread releases the lock by setting the next slot to true

• The second thread notices the change and gets the lock

acquired The lock
is mine!

7/46

ALock

public class Alock implements Lock {
 boolean[] flags = {true,false,...,false};
 AtomicInteger next = new AtomicInteger(0);
 ThreadLocal<Integer> mySlot;

 public void lock() {
 mySlot = next.getAndIncrement();
 while (!flags[mySlot % n]) {}
 flags[mySlot % n] = false;
 }

 public void unlock() {
 flags[(mySlot+1) % n] = true;
 }
}

One flag per thread

Thread-local variable

Take the next slot

Tell next thread to go

7/47

ALock: Performance

• Shorter handover than backoff

• Curve is practically flat

• Scalable performance

• FIFO fairness

threads

ideal

ti
m

e

TAS lock TTAS lock

ALock

7/48

ALock: Evaluation

• Good

– First truly scalable lock

– Simple, easy to implement

• Bad

– One bit per thread

– Unknown number of threads?

7/49

ALock: Alternative Technique

• The threads could update own flag and spin on their predecessor’s flag

• This is basically what the CLH lock does, but using a linked list instead of
an array

• Is this a good idea?

flags

… F F F F F F F

acquiring acquiring

i

i-1

i+1

i

Not discussed
in this lecture

7/50

NUMA Architectures

• Non-Uniform Memory Architecture

• Illusion

– Flat shared memory

• Truth

– No caches (sometimes)

– Some memory regions faster than others

 Spinning on local memory is fast: Spinning on remote memory is slow:

7/51

MCS Lock

• Idea

– Use a linked list instead of an array  small, constant-sized space

– Spin on own flag, just like the Anderson queue lock

• The space usage

– L = number of locks

– N = number of threads

• of the Anderson lock is O(LN)

• of the MCS lock is O(L+N)

7/52

MCS Lock: Initially

tail

idle
Queue tail

• The lock is represented as a linked list of QNodes, one per thread

• The tail of the queue is shared among all threads

7/53

MCS Lock: Acquiring the Lock

• To acquire the lock, the thread places its QNode at the tail of the list
by swapping the tail to its QNode

• If there is no predecessor, the thread acquires the lock

false

(allocate QNode)

Swap

The lock
is mine!

false = lock
is free

acquired

tail

7/54

acquiring

• If another thread wants to acquire the lock, it again applies swap

• The thread spins on its own QNode because there is a predecessor

true

Swap

MCS Lock: Contention

tail

false

acquired

7/55

• The first thread releases the lock by setting its successor’s QNode to false

MCS Lock: Releasing the Lock

The lock
is mine!

acquired

false

tail

false

released

7/56

MCS Queue Lock

public class QNode {
 boolean locked = false;
 QNode next = null;
}

7/57

MCS Queue Lock

public class MCSLock implements Lock {
 AtomicReference tail;

 public void lock() {
 QNode qnode = new QNode();
 QNode pred = tail.getAndSet(qnode);
 if (pred != null) {
 qnode.locked = true;
 pred.next = qnode;
 while (qnode.locked) {}
 }
 }

 ...

Add my node to the tail

Fix if queue was
non-empty

7/58

• If there is a successor, unlock it. But, be cautious!

• Even though a QNode does not have a successor, the purple thread knows
that another thread is active because tail does not point to its QNode!

MCS Lock: Unlocking

Waiting…

acquiring

true

Swap tail

false

releasing

7/59

• As soon as the pointer to the successor is set, the purple thread can
release the lock

MCS Lock: Unlocking Explained

The lock
is mine!

Set my successor’s
QNode to false!

acquired

false

tail

false

released

7/60

MCS Queue Lock

 ...

 public void unlock() {
 if (qnode.next == null) {
 if (tail.CAS(qnode, null))
 return;
 while (qnode.next == null) {}
 }
 qnode.next.locked = false;
 }
}

Missing successor?

If really no successor,
tail = null

Otherwise, wait for
successor to catch up

Pass lock to successor

7/61

Abortable Locks

• What if you want to give up waiting for a lock?

• For example

– Time-out

– Database transaction aborted by user

• Back-off Lock

– Aborting is trivial: Just return from lock() call!

– Extra benefit: No cleaning up, wait-free, immediate return

• Queue Locks

– Can’t just quit: Thread in line behind will starve

– Need a graceful way out…

7/62

Problem with Queue Locks

spinning

true false false

released

spinning

true true false

acquired

…?

aborted

7/63

Abortable MCS Lock

• A mechanism is required to recognize and remove aborted threads

– A thread can set a flag indicating that it aborted

– The predecessor can test if the flag is set

– If the flag is set, its new successor is the successor’s successor

– How can we handle concurrent aborts? This is not discussed in this lecture

spinning

true true false

acquired aborted

Spinning on
remote object…?!

7/64

Composite Locks

• Queue locks have many advantages

– FIFO fairness, fast lock release, low contention

 but require non-trivial protocols to handle aborts (and recycling of nodes)

• Backoff locks support trivial time-out protocols

 but are not scalable and may have slow lock release times

• A composite lock combines the best of both approaches!

• Short fixed-sized array of lock nodes

• Threads randomly pick a node and try
to acquire it

• Use backoff mechanism to acquire a node

• Nodes build a queue

• Use a queue lock mechanism to acquire the lock

7/65

One Lock To Rule Them All?

• TTAS+Backoff, MCS, Abortable MCS…

• Each better than others in some way

• There is not a single best solution

• Lock we pick really depends on

– the application

– the hardware

– which properties are important

7/66

Handling Multiple Threads

• Adding threads should not lower the throughput

– Contention effects can mostly be fixed by Queue locks

• Adding threads should increase throughput

– Not possible if the code is inherently sequential

– Surprising things are parallelizable!

• How can we guarantee consistency if there are many threads?

7/67

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

– Mostly easy to reason about

– This is the standard Java model (synchronized blocks and methods)

• Problem: Sequential bottleneck

– Threads “stand in line”

– Adding more threads does not improve throughput

– We even struggle to keep it from getting worse…

• So why do we even use a multiprocessor?

– Well, some applications are inherently parallel…

– We focus on exploiting non-trivial parallelism

7/68

Exploiting Parallelism

• We will now talk about four “patterns”

– Bag of tricks …

– Methods that work more than once …

• The goal of these patterns are

– Allow concurrent access

– If there are more threads, the throughput increases!

7/69

Pattern #1: Fine-Grained Synchronization

• Instead of using a single lock split the concurrent object into
independently-synchronized components

• Methods conflict when they access

– The same component

– At the same time

7/70

Pattern #2: Optimistic Synchronization

• Assume that nobody else wants to access your part of the concurrent
object

• Search for the specific part that you want to lock without locking any
other part on the way

• If you find it, try to lock it and perform your operations

– If you don’t get the lock, start over!

• Advantage

– Usually cheaper than always assuming that there may be a conflict due to a
concurrent access

7/71

Pattern #3: Lazy Synchronization

• Postpone hard work!

• Removing components is tricky

– Either remove the object physically

– Or logically: Only mark component to be deleted

7/72

Pattern #4: Lock-Free Synchronization

• Don’t use locks at all!

– Use compareAndSet() & other RMW operations!

• Advantages

– No scheduler assumptions/support

• Disadvantages

– Complex

– Sometimes high overhead

7/73

Illustration of Patterns

• In the following, we will illustrate these patterns using a list-based set

– Common application

– Building block for other apps

• A set is a collection of items

– No duplicates

• The operations that we want to allow on the set are

– add(x) puts x into the set

– remove(x) takes x out of the set

– contains(x) tests if x is in the set

7/74

The List-Based Set

• We assume that there are sentinel nodes at the beginning (head) and end
(tail) of the linked list

• Add node b:

• Remove node b:

a c d

b

a b c

a c d

7/75

Coarse-Grained Locking

• A simple solution is to lock the entire list for each operation

– E.g., by locking the head

• Simple and clearly correct!

• Works poorly with contention…

a c d

b

7/76

Fine-Grained Locking

• Split object (list) into pieces (nodes)

– Each piece (each node in the list) has its own lock

– Methods that work on disjoint pieces need not exclude each other

• Hand-over-hand locking: Use two locks when traversing the list

– Why two locks?

a c d

b

7/77

Problem with One Lock

• Assume that we want to delete node c

• We lock node b and set its next pointer to the node after c

• Another thread may concurrently delete node b by setting the next
pointer from node a to node c

b a c

b a c

Hooray, I’m
not deleted!

7/78

Insight

• If a node is locked, no one can delete the node’s successor

• If a thread locks

– the node to be deleted

– and also its predecessor

• then it works!

• That’s why we (have to) use two locks!

7/79

Hand-Over-Hand Locking: Removing Nodes

• Assume that two threads want to remove the nodes b and c

• One thread acquires the lock to the sentinel, the other has to wait

Remove
node b!

a b c

Remove
node c!

7/80

Hand-Over-Hand Locking: Removing Nodes

• The same thread that acquired the sentinel lock can then lock the next
node

a b c

Remove
node b!

Remove
node c!

7/81

Hand-Over-Hand Locking: Removing Nodes

• Before locking node b, the sentinel lock is released

• The other thread can now acquire the sentinel lock

a b c

Remove
node b!

Remove
node c!

7/82

Hand-Over-Hand Locking: Removing Nodes

• Before locking node c, the lock of node a is released

• The other thread can now lock node a

a b c

Remove
node b!

Remove
node c!

7/83

Hand-Over-Hand Locking: Removing Nodes

• Node c can now be removed

• Afterwards, the two locks are released

Remove
node b!

Remove
node c!

a b c

7/84

Hand-Over-Hand Locking: Removing Nodes

• The other thread can now lock node b and remove it

Remove
node b!

a b

7/85

List Node

public class Node {
 public T item;
 public int key;
 public Node next;
}

Item of interest

Usually a hash code

Reference to next node

7/86

Remove Method

public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();

 ...

 } finally {
 curr.unlock();
 pred.unlock();
 }
}

Start at the head and lock it

Lock the current node

Make sure that the
locks are released

Traverse the list and
remove the item

On the
next slide!

7/87

Remove Method

 while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Search key range

If item found,
remove the node

Unlock pred and
lock the next node

Return false if the element is not present

7/88

Why does this work?

• To remove node e

– Node e must be locked

– Node e’s predecessor must be locked

• Therefore, if you lock a node

– It can’t be removed

– And neither can its successor

• To add node e

– Must lock predecessor

– Must lock successor

• Neither can be deleted

– Is the successor lock actually required?

7/89

Drawbacks

• Hand-over-hand locking is sometimes better than coarse-grained locking

– Threads can traverse in parallel

– Sometimes, it’s worse!

• However, it’s certainly not ideal

– Inefficient because many locks must be acquired and released

• How can we do better?

7/90

Optimistic Synchronization

• Traverse the list without locking!

a b d

Add
node c!

Found the
position!

7/91

Optimistic Synchronization: Traverse without Locking

• Once the nodes are found, try to lock them

• Check that everything is ok

a b d

Add
node c!

Lock them!

Is everything ok?

What could
go wrong…?

7/92

Optimistic Synchronization: What Could Go Wrong?

• Another thread may lock nodes a and b and remove b before node c is
added  If the pointer from node b is set to node c, then node c is not
added to the list!

a b d

Add
node c!

Remove b!

7/93

Optimistic Synchronization: Validation #1

• How can this be fixed?

• After locking node b and node d, traverse the list again to verify that b is
still reachable

a b d

Add
node c!

Node b can still
be reached!

7/94

Optimistic Synchronization: What Else Could Go Wrong?

• Another thread may lock nodes b and d and add a node b’ before node c
is added  By adding node c, the addition of node b’ is undone!

a b d

Add
node c!

Add b’!

b'

7/95

Optimistic Synchronization: Validation #2

• How can this be fixed?

• After locking node b and node d, also check that node b still points to
node d!

a b d

Add
node c!

The pointer is
still correct…

7/96

Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

If pred is reached,
test if the

successor is curr

Predecessor not reachable

7/97

Optimistic Synchronization: Remove

private boolean remove(Item item) {
 int key = item.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (item == curr.item)
 break;
 pred = curr;
 curr = curr.next;
 }
 ...

Retry on synchronization
conflict

Stop if we find the item

7/98

Optimistic Synchronization: Remove

 ...
 try {
 pred.lock(); curr.lock();
 if (validate(pred,curr)) {
 if (curr.item == item) {
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }
 }
 } finally {
 pred.unlock();
 curr.unlock();
 }
 }
}

Lock both nodes

Check for
synchronization conflicts

Remove node if
target found

Always unlock the nodes

7/99

Optimistic Synchronization

• Why is this correct?

– If nodes b and c are both locked, node b still accessible, and node c still the
successor of node b, then neither b nor c will be deleted by another thread

– This means that it’s ok to delete node c!

• Why is it good to use optimistic synchronization?

– Limited hot-spots: no contention on traversals

– Fewer lock acquisitions and releases

• When is it good to use optimistic synchronization?

– When the cost of scanning twice without locks is less than the cost of
scanning once with locks

• Can we do better?

– It would be better to traverse the list only once…

7/100

Lazy Synchronization

• Key insight

– Removing nodes causes trouble

– Do it “lazily”

• How can we remove nodes “lazily”?

– First perform a logical delete: Mark current node as removed (new!)

– Then perform a physical delete: Redirect predecessor’s next (as before)

b b

7/101

Lazy Synchronization

• All Methods

– Scan through locked and marked nodes

– Removing a node doesn’t slow down other method calls…

• Note that we must still lock pred and curr nodes!

• How does validation work?

– Check that neither pred nor curr are marked

– Check that pred points to curr

7/102

Lazy Synchronization

• Traverse the list and then try to lock the two nodes

• Validate!

• Then, mark node c and change the predecessor’s next pointer

Remove
node c!

Check that b and c
are not marked and

that b points to c

b c a

7/103

Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {
 return !pred.marked && !curr.marked &&
 pred.next == curr;
}

Nodes are not
logically removed

Predecessor still
points to current

7/104

Lazy Synchronization: Remove

public boolean remove(Item item) {
 int key = item.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (item == curr.item)
 break;
 pred = curr;
 curr = curr.next;
 }
 ...

This is the same as before!

7/105

Lazy Synchronization: Remove

 ...
 try {
 pred.lock(); curr.lock();
 if (validate(pred,curr)) {
 if (curr.item == item) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }
 }
 } finally {
 pred.unlock();
 curr.unlock();
 }
 }
}

Check for
synchronization conflicts

If the target is found,
mark the node and

remove it

7/106

Lazy Synchronization: Contains

public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.item == item && !curr.marked;

Traverse without locking
(nodes may have been

removed)

Is the element present and not marked?

7/107

Evaluation

• Good
– The list is traversed only once without locking

– Note that contains() doesn’t lock at all!

– This is nice because typically contains() is called much more often than add()
or remove()

– Uncontended calls don’t re-traverse

• Bad
– Contended add() and remove() calls do re-traverse

– Traffic jam if one thread delays

• Traffic jam?

– If one thread gets the lock and experiences a cache miss/page fault, every
other thread that needs the lock is stuck!

– We need to trust the scheduler….

7/108

Reminder: Lock-Free Data Structures

• If we want to guarantee that some thread will
eventually complete a method call, even if other
threads may halt at malicious times, then the
implementation cannot use locks!

• Next logical step: Eliminate locking entirely!

• Obviously, we must use some sort of RMW method

• Let’s use compareAndSet() (CAS)!

7/109

Remove Using CAS

• First, remove the node logically (i.e., mark it)

• Then, use CAS to change the next pointer

• Does this work…?

Remove
node c!

b c a

7/110

Remove Using CAS: Problem

• Unfortunately, this doesn’t work!

• Another node d may be added before node c is physically removed

• As a result, node d is not added to the list…

Remove
node c!

Add
node d!

b c a

d

7/111

Solution

• Mark bit and next pointer are “CASed together”

• This atomic operation ensures that no node can cause a conflict by adding
(or removing) a node at the same position in the list

Remove
node c!

Node c
has been
removed!

b c a

d

7/112

Solution

• Such an operation is called an atomic markable reference

– Atomically update the mark bit and redirect the predecessor’s next pointer

• In Java, there’s an AtomicMarkableReference class

– In the package Java.util.concurrent.atomic package

address false mark bit Reference

Updated atomically

7/113

Changing State

private Object ref;
private boolean mark;

public synchronized boolean compareAndSet(
Object expectedRef, Object updateRef,
boolean expectedMark, boolean updateMark) {

 if (ref == expectedRef && mark == expectedMark){
 ref = updateRef;
 mark = updateMark;
 }
}

The reference to the next
Object and the mark bit

If the reference and the mark are as
expected, update them atomically

7/114

Removing a Node

• If two threads want to delete the nodes b and c, both b and c are marked

• The CAS of the red thread fails because node b is marked!

• (If node b is not marked, then b is removed first and there is no conflict)

Remove
node b!

remove
node c!

b c a

CAS CAS

7/115

Traversing the List

• Question: What do you do when you find a “logically” deleted node in
your path when you’re traversing the list?

7/116

Lock-Free Traversal

• If a logically deleted node is encountered, CAS the predecessor’s next
field and proceed (repeat as needed)

CAS!

b c a

CAS

7/117

Performance

• The throughput of the presented techniques has been measured for a
varying percentage of contains() method calls

– Using a benchmark on a 16 node shared memory machine

Ops/sec (32 threads)
Lock-free

Lazy

Coarse Grained
Fine Grained

% contains()

106

8∙106

0 10 20 30 40 50 60 70 80 90

7/118

Low Ratio of contains()

Lock-free

Lazy

Coarse Grained
Fine Grained

Threads

Ops/sec (50% read)

0 5 10 15 20 25 30

3.5∙106

3∙106

2.5∙106

1.5∙106

5∙105

2∙106

1∙106

• If the ratio of contains() is low, the lock-free linked list and the linked list
with lazy synchronization perform well even if there are many threads

7/119

High Ratio of contains()

Lock-free
Lazy

Coarse Grained
Fine Grained

0 5 10 15 20 25 30

Threads

1.2∙107

1∙107

8∙106

6∙106

4∙106

2∙106

Ops/sec (90% reads)

• If the ratio of contains() is high, again both the lock-free linked list and the
linked list with lazy synchronization perform well even if there are many
threads

7/120

“To Lock or Not to Lock”

• Locking vs. non-blocking: Extremist views on both sides

• It is nobler to compromise by combining locking and non-blocking
techniques

– Example: Linked list with lazy synchronization combines blocking add() and
remove() and a non-blocking contains()

– Blocking/non-blocking is a property of a method

7/121

Linear-Time Set Methods

• We looked at a number of ways to make highly-concurrent list-based sets
– Fine-grained locks

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• What’s not so great?

– add(), remove(), contains() take time linear in the set size

• We want constant-time methods!

– At least on average…

How…?

7/122

Hashing

• A hash function maps the items to integers

– h: items  integers

• Uniformly distributed

– Different items “most likely” have different hash values

• In Java there is a hashCode() method

7/123

0

1

2

3

16

9

h(k) = k mod 4
buckets

Sequential Hash Map

• The hash table is implemented as an array of buckets, each pointing to a
list of items

• Problem: If many items are added, the lists get long  Inefficient
lookups!

• Solution: Resize!

7

4

15

28

7/124

0

1

2

3

16

9

h(k) = k mod 8

Resizing

• The array size is doubled and the hash function adjusted

7

4

15

28

4

5

6

7

Grow the array

New hash function

7/125

0

1

2

3

16

9

h(k) = k mod 8

Resizing

• Some items have to be moved to different buckets!

7

4

15

28

4

5

6

7

4 28

7 15

7/126

Hash Sets

• A hash set implements a set object

– Collection of items, no duplicates

– add(), remove(), contains() methods

• More coding ahead!

7/127

Simple Hash Set

public class SimpleHashSet {
 protected LockFreeList[] table;

 public SimpleHashSet(int capacity) {
 table = new LockFreeList[capacity];
 for (int i = 0; i < capacity; i++)
 table[i] = new LockFreeList();
 }

 public boolean add(Object key) {
 int hash = key.hashCode() % table.length;
 return table[hash].add(key);

Array of lock-free lists

Initial size

Initialization

Use hash of object to pick a bucket
and call bucket’s add() method

7/128

Simple Hash Set: Evaluation

• We just saw a

– Simple

– Lock-free

– Concurrent

 hash-based set implementation

• But we don’t know how to resize…

• Is Resizing really necessary?

– Yes, since constant-time method calls require constant-length buckets and a
table size proportional to the set size

– As the set grows, we must be able to resize

7/129

Set Method Mix

• Typical load

– 90% contains()

– 9% add ()

– 1% remove()

• Growing is important, shrinking not so much

• When do we resize?

• There are many reasonable policies, e.g., pick a threshold on the number
of items in a bucket

• Global threshold

– When, e.g., ≥ ¼ buckets exceed this value

• Bucket threshold

– When any bucket exceeds this value

7/130

Coarse-Grained Locking

• If there are concurrent accesses, how can we safely resize the array?

• As with the linked list, a straightforward solution is to use coarse-grained
locking: lock the entire array!

• This is very simple and correct

• However, we again get a sequential bottleneck…

• How about fine-grained locking?

7/131

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking

• Each lock is associated with one bucket

• After acquiring the lock of the list, insert the item in the list!

7

8

11

17

7/132

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Acquire all locks in ascending order and make sure that the table
reference didn’t change between resize decision and lock acquisition!

7

8

11

17

Table reference
didn’t change?

7/133

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Allocate a new table and copy all elements

7

8

11

17
8

4

9 17

11

7

0

1

2

3

4

5

6

7

7/134

0

1

2

3

h(k) = k mod 8

Fine-Grained Locking: Resizing

• Stripe the locks: Each lock is now associated with two buckets

• Update the hash function and the table reference

0

1

2

3

4

5

6

7

8

4

9 17

11

7

7/135

Observations

• We grow the table, but we don’t increase the number of locks

– Resizing the lock array is tricky …

• We use sequential lists (coarse-grained locking)

– No lock-free list

– If we’re locking anyway, why pay?

7/136

Fine-Grained Hash Set

public class FGHashSet {
 protected RangeLock[] lock;
 protected List[] table;

 public FGHashSet(int capacity) {
 table = new List[capacity];
 lock = new RangeLock[capacity];
 for (int i = 0; i < capacity; i++){
 lock[i] = new RangeLock();
 table[i] = new LinkedList();
 }
 }

Array of locks
Array of buckets

Initially the same
number of locks

and buckets

7/137

Fine-Grained Hash Set: Add Method

 public boolean add(Object key) {
 int keyHash = key.hashCode() % lock.length;
 synchronized(lock[keyHash]) {
 int tableHash = key.hashCode() % table.length;
 return table[tableHash].add(key);
 }
 }

Acquire the
right lock

Call the add() method of
the right bucket

7/138

Fine-Grained Hash Set: Resize Method

 public void resize(int depth, List[] oldTable) {
 synchronized (lock[depth]) {
 if (oldTable == this.table) {
 int next = depth + 1;
 if (next < lock.length)
 resize(next, oldTable);
 else
 sequentialResize();
 }
 }
 }
}

Resize() calls
resize(0,this.table)

Acquire the next
lock and check

that no one else
has resized

Recursively acquire
the next lock

Once the locks are
acquired, do the work

7/139

Fine-Grained Locks: Evaluation

• We can resize the table, but not the locks

• It is debatable whether method calls are constant-time in presence of
contention …

• Insight: The contains() method does not modify any fields

– Why should concurrent contains() calls conflict?

7/140

Read/Write Locks

 public interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
 }

Return the associated read lock

Return the associated write lock

7/141

Lock Safety Properties

• No thread may acquire the write lock

– while any thread holds the write lock

– or the read lock

• No thread may acquire the read lock

– while any thread holds the write lock

• Concurrent read locks OK

• This satisfies the following safety properties

– If readers > 0 then writer == false

– If writer = true then readers == 0

7/142

Read/Write Lock: Liveness

• How do we guarantee liveness?

– If there are lots of readers, the writers may be locked out!

• Solution: FIFO Read/Write lock

– As soon as a writer requests a lock, no more readers are accepted

– Current readers “drain” from lock and the writers acquire it eventually

7/143

Optimistic Synchronization

• What if the contains() method scans without locking…?

• If it finds the key

– It is ok to return true!

– Actually requires a proof…

• What if it doesn’t find the key?

– It may be a victim of resizing…

– Get a read lock and try again!

– This makes sense if it is expected (?) that the key is there and resizes are
rare…

– Better: Check if the table size is the same before and after the method call!

We won’t discuss
this in this lecture

7/144

Stop The World Resizing

• The resizing we have seen up till now stops all concurrent operations

• Can we design a resize operation that will be incremental?

• We need to avoid locking the table…

• We want a lock-free table with incremental resizing!
How…?

7/145

Lock-Free Resizing Problem

• In order to remove and then add even a single item, “single location CAS”
is not enough…

0

1

2

3

16

9

7

4

15

28

4

5

6

7

We need to extend the table!

4 28

7/146

Idea: Don’t Move the Items

• Move the buckets instead of the items!

• Keep all items in a single lock-free list

• Buckets become “shortcut pointers” into the list

0

1

2

3

16 4 28 5 9 15

7/147

Recursive Split Ordering

• Example: The items 0 to 7 need to be hashed into the table

• Recursively split the list the buckets in half:

• The list entries are sorted in an order that allows recursive splitting

0

1

1/2

2

3

1/4 3/4

0 4 2 6 1 5 3 7

How…?

7/148

Recursive Split Ordering

• Note that the least significant bit (LSB) is 0 in the first half and 1 in the
other half! The second LSB determines the next pointers etc.

0

1

LSB = 1

2

3

LSB = 0

0 4 2 6 1 5 3 7

LSB = 00 LSB = 10 LSB = 01 LSB = 11

7/149

Split-Order

• If the table size is 2i:

– Bucket b contains keys k = b mod 2i

– The bucket index consists of the key's i least significant bits

• When the table splits:
– Some keys stay (b = k mod 2i+1)

– Some keys move (b+2i = k mod2i+1)

• If a key moves is determined by the (i+1)st bit
– counting backwards

7/150

A Bit of Magic

• We need to map the real keys to the split-order

• Look at the reversed binary representation of the keys and the indices

• The real keys:

• Split-order:

• Just reverse the order of the key bits in order to get the index!

0 1 2 3 4 5 6 7

0 4 2 6 1 5 3 7

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111

Real key 1 is at index 4!

7/151

Split Ordered Hashing

• After a resize, the new pointers are found by searching for the right index

• A problem remains: How can we remove a node by means of a CAS if two
sources point to it?

0

1

2

3

0 4 2 6 1 5 3 7
000 001 010 011 100 101 110 111

Order according to reversed bits

2 pointers to some nodes!

7/152

Sentinel Nodes

• Solution: Use a sentinel node for each bucket

• We want a sentinel key for i

– before all keys that hash to bucket i

– after all keys that hash to bucket (i-1)

0

1

2

3

0 16 4 1 9 3 7 15

7/153

Initialization of Buckets

• We can now split a bucket in a lock-free manner using two CAS() calls

• Example: We need to initialize bucket 3 to split bucket 1!

0

1

2

3

0 16 4 1 9

3

7 15

7/154

Adding Nodes

• Example: Node 10 is added

• First, bucket 2 (= 10 mod 4) must be initialized, then the new node is
added

0

1

2

3

0 16 4 1 9 3 7 15

2 10

7/155

Recursive Initialization

• It is possible that buckets must be initialized recursively

• Example: When node 7 is added, bucket 3 (= 7 mod 4) is initialized and
then bucket 1 (= 3 mod 2) is also initialized

• Note that ≈ log n empty buckets may be initialized if one node is added,
but the expected depth is constant!

0

1

2

3

0 8 12 1 7 3

n = number of nodes

7/156

Lock-Free List

private int makeRegularKey(int key) {
 return reverse(key | 0x80000000);
}

private int makeSentinelKey(int key) {
 return reverse(key);
}

Set high-order bit
to 1 and reverse

Simply reverse
(high-order bit is 0)

7/157

Split-Ordered Set

public class SOSet{
 protected LockFreeList[] table;
 protected AtomicInteger tableSize;
 protected AtomicInteger setSize;

 public SOSet(int capacity) {
 table = new LockFreeList[capacity];
 table[0] = new LockFreeList();
 tableSize = new AtomicInteger(1);
 setSize = new AtomicInteger(0);
}

This is the lock-free list
(slides 116-124) with
minor modifications

Track how much of
the table is used and

the set size so that
we know when to

resize

Initially use 1 bucket
and the size is zero

7/158

Split-Ordered Set: Add

public boolean add(Object object) {
 int hash = object.hashCode();
 int bucket = hash % tableSize.get();
 int key = makeRegularKey(hash);
 LockFreeList list = getBucketList(bucket);
 if (!list.add(object,key))
 return false;
 resizeCheck();
 return true;
}

Pick a bucket

Non-sentinel
split-ordered key

Get pointer to
bucket’s sentinel,

initializing if
necessary

Try to add with
reversed key

Resize if
necessary

7/159

Recall: Resizing & Initializing Buckets

• Resizing

– Divide the set size by the total number of buckets

– If the quotient exceeds a threshold, double the table size up to a fixed limit

• Initializing Buckets

– Buckets are originally null

– If you encounter a null bucket, initialize it

– Go to bucket’s parent (earlier nearby bucket) and recursively initialize if
necessary

– Constant expected work!

7/160

Split-Ordered Set: Initialize Bucket

public void initializeBucket(int bucket) {
 int parent = getParent(bucket);
 if (table[parent] == null)
 initializeBucket(parent);
 int key = makeSentinelKey(bucket);
 table[bucket] = new
 LockFreeList(table[parent],key);
}

Find parent,
recursively

initialize if needed

Prepare key for
new sentinel

Insert sentinel if not present and
return reference to rest of list

7/161

Correctness

• Split-ordered set is a correct, linearizable, concurrent set
implementation

• Constant-time operations!

– It takes no more than O(1) items between two dummy nodes on average

– Lazy initialization causes at most O(1) expected recursion depth in
initializeBucket()

7/162

Empirical Evaluation

• Evaluation has been performed on a 30-processor Sun Enterprise 3000

• Lock-Free vs. fine-grained (Lea) optimistic locking

• In a non-multiprogrammed environment

• 106 operations: 88% contains(), 10% add(), 2% remove()

 No work: Busy:

o
p

s/
ti

m
e

threads

locking

lock-free

o
p

s/
ti

m
e

threads

locking

lock-free

7/163

Empirical Evaluation

• Expected bucket length

– The load factor is the capacity
of the individual buckets

• Varying The Mix

– Increasing the number of updates

o
p

s/
ti

m
e

Load factor

locking

lock-free

o
p

s/
ti

m
e

locking

lock-free

More reads More updates

7/164

Additional Performance

• Additionally, the following parameters have been analyzed:

– The effects of the choice of locking granularity

– The effects of the bucket size

7/165

Number of Fine-Grain Locks

(Lea = fine-grained optimistic locking)

7/166

Lock-free vs. Locks

7/167

Hash Table Load Factor

(load factor = nodes per bucket)

7/168

Varying Operations

7/169

Conclusion

• Concurrent resizing is tricky

• Lock-based

– Fine-grained

– Read/write locks

– Optimistic

• Lock-free

– Builds on lock-free list

7/170

Summary

• We talked about several locking mechanisms

• In particular we have seen

– TAS & TTAS

– Alock & backoff lock

– MCS lock & abortable MCS lock

• We also talked about techniques to deal with concurrency in linked lists

– Hand-over-hand locking

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• Finally, we talked about hashing

– Fine-grained locking

– Recursive split ordering

7/171

Credits

• The TTAS lock is due to Kruskal, Rudolph, and Snir, 1988.

• Tom Anderson invented the ALock, 1990.

• The MCS lock is due to Mellor-Crummey and Scott, 1991.

• The first lock-free list algorithms are credited to John Valois, 1995.

• The lock-free list algorithm discussed in this lecture is a variation of
algorithms proposed by Harris, 2001, and Michael, 2002.

• The lock-free hash set based on split-ordering is by Shalev and Shavit,
2006.

7/172

That’s all, folks!
Questions & Comments?

