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Overview 

 

• Introduction 

• Spin Locks 

– Test-and-Set & Test-and-Test-and-Set 

– Backoff lock 

– Queue locks 

• Concurrent Linked List 

– Fine-grained synchronization 

– Optimistic synchronization 

– Lazy synchronization 

– Lock-free synchronization 

• Hashing 

– Fine-grained locking 

– Recursive split ordering 
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memory 

object object 

Concurrent Computation 

 

• We started with… 

• Multiple threads 

– Sometimes called processes 

• Single shared memory 

• Objects live in memory 

• Unpredictable asynchronous delays 

 

• Previously, we focused on fault-tolerance 

– In Chapter 1, we discussed theoretical results 

– In Chapter 2, we discussed practical solutions with a focus on efficiency 

 

• In this chapter, we focus on efficient concurrent computation! 

– Focus on asynchrony and not on explicit failures 
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Example: Parallel Primality Testing 

 

• Challenge 

– Print all primes from 1 to 1010 

• Given 

– Ten-core multiprocessor 

– One thread per processor 

• Goal 

– Get ten-fold speedup (or close) 

 

• Naïve Approach 

– Split the work evenly 

– Each thread tests range of 109 

… 

… 109 1010 2·109 1 

P0 P1 P9 

Problems with 
this approach? 
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Issues 

 

• Higher ranges have fewer primes 

• Yet larger numbers are harder to test 

• Thread workloads 

– Uneven 

– Hard to predict 

• Need dynamic load balancing 

 

• Better approach 

– Shared counter! 

– Each thread takes a number 

17 

18 

19 
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Counter counter = new Counter(1); 
 
void primePrint() { 
    long j = 0; 
    while(j < 1010) {  
         j = counter.getAndIncrement(); 
     if(isPrime(j)) 
         print(j); 
 } 
} 

Procedure Executed at each Thread 

Shared counter object 

Increment counter & test 
if return value is prime 
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Counter Implementation 

public class Counter { 
 
    private long value; 
 
    public long getAndIncrement() { 
        return value++; 
    } 
} 

What’s the problem with 
this implementation? 
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time 

value… 1 

read  
1 

read  
1 

write  
2 

read  
2 

write  
3 

write  
2 

2 3 2 

Problem 
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Counter Implementation 

public class Counter { 
 
    private long value; 
 
    public long getAndIncrement() { 
        temp = value; 
     value = temp + 1; 
     return temp; 
    } 
} 

These steps must 
be atomic! 

Recall: We can use Read-Modify-
Write (RMW) instructions! 

We have to guarantee 
mutual exclusion 
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Model 

 

• The model in this part is slightly more complicated 

– However, we still focus on principles 

 

• What remains the same? 

– Multiple instruction multiple data (MIMD) architecture 

– Each thread/process has its own code and local variables  

– There is a shared memory that all threads can access 

 

• What is new? 

– Typically, communication runs over a shared bus 
(alternatively, there may be several channels)  

– Communication contention 

– Communication latency 

– Each thread has a local cache 

memory 

I.e., multiprocessors 
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cache 

Bus Bus 

cache cache 

1 
shared  
memory 

Local  
variables 

Counter counter = new Counter(1); 
 
void primePrint() { 
    long j = 0; 
    while(j < 1010) { 
      j = counter.getAndIncrement(); 
      if(isPrime(j)) 
        print(j); 
    } 
} 

Model: Where Things Reside 

E.g., the shared 
counter is here 

Code 
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Revisiting Mutual Exclusion 

 

• We need mutual exclusion for our counter 

• We are now going to study mutual exclusion from a different angle 

– Focus on performance, not just correctness and progress 

• We will begin to understand how performance depends on our software 
properly utilizing the multiprocessor machine’s hardware, 
and get to know a collection of locking algorithms! 

 

• What should you do if you can’t get a lock? 

• Keep trying 

– “spin” or “busy-wait” 

– Good if delays are short 

• Give up the processor 

– Good if delays are long 

– Always good on uniprocessor 

Our focus 
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CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

..
.

 

Basic Spin-Lock 

Lock introduces 
sequential bottleneck 
 No parallelism! 

Lock suffers 
from contention 

Huh? 
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Reminder: Test&Set 

 

• Boolean value 

• Test-and-set (TAS) 

– Swap true with current value 

– Return value tells if prior value was true or false 

• Can reset just by writing false 

• Also known as “getAndSet” 
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Reminder: Test&Set 

public class AtomicBoolean { 
  private boolean value; 
 
  public synchronized boolean getAndSet() { 
    boolean prior = this.value; 
    this.value = true;  
    return prior; 
  } 
 
} 

Get current value and set 
value to true 

java.util.concurrent.atomic 
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Test&Set Locks 

 

• Locking 

– Lock is free: value is false 

– Lock is taken: value is true 

• Acquire lock by calling TAS 

– If result is false, you win 

– If result is true, you lose  

• Release lock by writing false 
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Test&Set Lock 

public class TASLock implements Lock { 
  AtomicBoolean state = new AtomicBoolean(false); 
 
  public void lock() { 
    while (state.getAndSet()) {} 
  } 
 
  public void unlock() { 
    state.set(false); 
  } 
} 

Keep trying until 
lock acquired 

Lock state is AtomicBoolean 

Release lock by resetting state to false 
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Performance 

 

• Experiment 

– n threads 

– Increment shared counter 1 million times 

• How long should it take? 

• How long does it take? 

 
ti

m
e 

threads 
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Test&Test&Set Locks 

 

• How can we improve TAS? 

• A crazy idea: Test before you test and set! 

 

• Lurking stage 

– Wait until lock “looks” free 

– Spin while read returns true (i.e., the lock is taken) 

• Pouncing state 

– As soon as lock “looks” available 

– Read returns false (i.e., the lock is free) 

– Call TAS to acquire the lock 

– If TAS loses, go back to lurking 
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Test&Test&Set Lock 

public class TTASLock implements Lock { 
  AtomicBoolean state = new AtomicBoolean(false); 
 
  public void lock() { 
 while (true) { 
   while(state.get()) {} 
       if(!state.getAndSet()) 
     return; 
    } 
  } 
 
  public void unlock() { 
    state.set(false); 
  } 
} 

Wait until lock looks free 

Then try to acquire it 
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Performance 

 

• Both TAS and TTAS do the same thing (in our old model) 

• So, we would expect basically the same results 

 

 

 

 

 

 

 

 

 

 

 

• Why is TTAS so much better than TAS? Why are both far from ideal? 

threads 

ideal 

ti
m

e 

TAS lock TTAS lock 
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Opinion 

 

• TAS & TTAS locks 

– are provably the same (in our old model) 

– except they aren’t (in field tests) 

• Obviously, it must have something to do with the model… 

• Let’s take a closer look at our new model and try to find a reasonable 
explanation! 
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Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 

Random access memory 
(tens of cycles) 

Shared bus 
• Broadcast medium 
• One broadcaster at a time 
• Processors (and memory) “snoop” 

Per-processor caches 
• Small 
• Fast: 1 or 2 cycles 
• Address and state information 
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Jargon Watch 

 

• Load request 

– When a thread wants to access data, it issues a load request 

• Cache hit 

– The thread found the data in its own cache 

• Cache miss 

– The data is not found in the cache 

– The thread has to get the data from memory 
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Load Request 

 

• Thread issues load request and memory responds 

cache 

memory 

cache cache 

data data 

data…? 

Bus 

Got your data 
right here!  
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Another Load Request 

Bus Bus 

memory 

cache cache data 

data 

data…? I got data! 

 

• Another thread wants to access the same data. Get a copy from the cache! 
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Modify Cached Data 

 

• Both threads now have the data in their cache 

• What happens if the red thread now modifies the data…? 

memory 

cache data 

What’s up with the other copies? 

data 

data 

Bus 
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Cache Coherence 

 

• We have lots of copies of data 

– Original copy in memory  

– Cached copies at processors 

• Some processor modifies its own copy 

– What do we do with the others? 

– How to avoid confusion? 
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Write-Back Caches 

 

• Accumulate changes in cache 

• Write back when needed 

– Need the cache for something else 

– Another processor wants it 

• On first modification 

– Invalidate other entries 

– Requires non-trivial protocol …  

 

• Cache entry has three states: 

– Invalid: contains raw bits 

– Valid: I can read but I can’t write 

– Dirty: Data has been modified 

– Intercept other load requests 

– Write back to memory before reusing cache 
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Invalidate 

 

• Let’s rewind back to the moment when the red processor updates its 
cached data 

• It broadcasts an invalidation message  Other processor invalidates its 
cache! 

Bus Bus 

memory 

cache data 

data 

cache 

Cache loses 
read 

permission 
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Invalidate 

Bus 

memory 

cache data 

data 

 

• Memory provides data only if not present in any cache, so there is no need 
to change it now (this is an expensive operation!) 

• Reading is not a problem  The threads get the data from the red process 

cache 
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Mutual Exclusion 

 

• What do we want to optimize? 

1. Minimize the bus bandwidth that the spinning threads use 

2. Minimize the lock acquire/release latency 

3. Minimize the latency to acquire the lock if the lock is idle 



7/33 

TAS vs. TTAS  

 

• TAS invalidates cache lines 

• Spinners 

– Always go to bus 

• Thread wants to release lock 

– delayed behind spinners!!! 

 

• TTAS waits until lock “looks” free 

– Spin on local cache 

– No bus use while lock busy 

• Problem: when lock is released 

– Invalidation storm … 

 

This is why TAS 
performs so poorly… 

Huh? 
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Local Spinning while Lock is Busy 

Bus 

memory 

busy busy busy 

busy 

 

• While the lock is held, all contenders spin in their caches, rereading 
cached data without causing any bus traffic 
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Bus 

On Release 

memory 

free 

free 

invalid invalid 

TAS! TAS! 

 

• The lock is released. All spinners take a cache miss and call Test&Set!   
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Time to Quiescence 

 

• Every process experiences a cache miss 

– All state.get() satisfied sequentially 

• Every process does TAS 

– Caches of other processes are invalidated 

• Eventual quiescence (“silence”) after 
acquiring the lock 

• The time to quiescence increases 
linearly with the number of processors for a bus architecture! 

 

P1 

P2 

Pn 

   

   

   
ti

m
e 

threads 
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Mystery Explained 

threads 

ideal 

ti
m

e 

TAS lock TTAS lock 

 

• Now we understand why the TTAS lock performs much better than the 
TAS lock, but still much worse than an ideal lock! 

 

 

 

 

 

 

 

 

 

 

• How can we do better? 
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Introduce Delay 

 

• If the lock looks free, but I fail to get it, there must be lots of contention 

• It’s better to back off than to collide again! 

 

• Example: Exponential Backoff 

• Each subsequent failure doubles expected waiting time 

2d 4d 
waiting time 

d spin lock 
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Exponential Backoff Lock 

public class Backoff implements Lock { 
  AtomicBoolean state = new AtomicBoolean(false); 
 
  public void lock() { 
 int delay = MIN_DELAY; 
 while (true) { 
       while(state.get()) {} 
   if (!lock.getAndSet()) 
     return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
     delay = 2 * delay; 
    } 
  } 
 
  // unlock() remains the same 
 
} 

Fix minimum delay 

Back off for 
random duration 

Double maximum 
delay until an upper 

bound is reached 
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Backoff Lock: Performance 

 

• The backoff lock outperforms the TTAS lock! 

• But it is still not ideal… 

threads 

ideal 

ti
m

e 

TAS lock TTAS lock 

Backoff lock 
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Backoff Lock: Evaluation 

 

• Good 

– Easy to implement 

– Beats TTAS lock 

• Bad 

– Must choose parameters carefully 

– Not portable across platforms 

 

• How can we do better? 

• Avoid useless invalidations 

– By keeping a queue of threads 

• Each thread 

– Notifies next in line 

– Without bothering the others 
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ALock: Initially 

flags 

next 

T F F F F F F F 

idle 

 

• The Anderson queue lock (ALock) is an array-based queue lock 

• Threads share an atomic tail field (called next) 
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ALock: Acquiring the Lock 

flags 

next 

T F F F F F F F 

acquired 

 

• To acquire the lock, each thread atomically increments the tail field 

• If the flag is true, the lock is acquired 

• Otherwise, spin until the flag is true  

The lock 
is mine! 
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ALock: Contention 

flags 

next 

T F F F F F F F 

acquired 

 

• If another thread wants to acquire the lock, it applies get&increment 

• The thread spins because the flag is false 

acquiring 
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ALock: Releasing the Lock 

flags 

next 

T T F F F F F F 

released 

 

• The first thread releases the lock by setting the next slot to true 

•  The second thread notices the change and gets the lock 

acquired The lock 
is mine! 
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ALock 

public class Alock implements Lock { 
  boolean[] flags = {true,false,...,false}; 
  AtomicInteger next = new AtomicInteger(0); 
  ThreadLocal<Integer> mySlot; 
 
  public void lock() { 
    mySlot = next.getAndIncrement(); 
 while (!flags[mySlot % n]) {} 
 flags[mySlot % n] = false;  
  } 
 
  public void unlock() { 
 flags[(mySlot+1) % n] = true; 
  } 
} 

One flag per thread 

Thread-local variable 

Take the next slot 

Tell next thread to go 
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ALock: Performance 

 

• Shorter handover than backoff 

• Curve is practically flat 

• Scalable performance 

• FIFO fairness 

threads 

ideal 

ti
m

e 

TAS lock TTAS lock 

ALock 
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ALock: Evaluation 

 

• Good 

– First truly scalable lock 

– Simple, easy to implement 

• Bad 

– One bit per thread 

– Unknown number of threads? 

 



7/49 

ALock: Alternative Technique 

 

• The threads could update own flag and spin on their predecessor’s flag 

 

 

 

 

 

 

 

 

 

• This is basically what the CLH lock does, but using a linked list instead of 
an array 

• Is this a good idea? 

flags 

… F F F F F F F 

acquiring acquiring 

i 

i-1 

i+1 

i 

Not discussed 
in this lecture 
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NUMA Architectures 

 

• Non-Uniform Memory Architecture 

• Illusion 

– Flat shared memory 

• Truth 

– No caches (sometimes) 

– Some memory regions faster than others 

 

 Spinning on local memory is fast:        Spinning on remote memory is slow: 
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MCS Lock 

 

• Idea 

– Use a linked list instead of an array  small, constant-sized space 

– Spin on own flag, just like the Anderson queue lock 

 

• The space usage 

– L = number of locks 

– N = number of threads 

• of the Anderson lock is O(LN) 

• of the MCS lock is O(L+N) 
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MCS Lock: Initially 

tail 

idle 
Queue tail 

 

• The lock is represented as a linked list of QNodes, one per thread 

• The tail of the queue is shared among all threads 
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MCS Lock: Acquiring the Lock 

 

• To acquire the lock, the thread places its QNode at the tail of the list 
by swapping the tail to its QNode 

• If there is no predecessor, the thread acquires the lock 

false 

(allocate QNode) 

Swap 

The lock 
is mine! 

false = lock 
is free 

acquired 

tail 
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acquiring 

 

• If another thread wants to acquire the lock, it again applies swap 

• The thread spins on its own QNode because there is a predecessor 

true 

Swap 

MCS Lock: Contention 

tail 

false 

acquired 
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• The first thread releases the lock by setting its successor’s QNode to false 

MCS Lock: Releasing the Lock 

The lock 
is mine! 

acquired 

false 

tail 

false 

released 
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MCS Queue Lock 

public class QNode { 
  boolean locked = false; 
  QNode next = null; 
} 
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MCS Queue Lock 

public class MCSLock implements Lock { 
  AtomicReference tail; 
 
  public void lock() { 
 QNode qnode = new QNode(); 
 QNode pred = tail.getAndSet(qnode); 
 if (pred != null) { 
   qnode.locked = true; 
   pred.next = qnode; 
   while (qnode.locked) {} 
 } 
  } 
 
  ... 

Add my node to the tail 

Fix if queue was 
non-empty 
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• If there is a successor, unlock it.  But, be cautious! 

• Even though a QNode does not have a successor, the purple thread knows 
that another thread is active because tail does not point to its QNode! 

MCS Lock: Unlocking 

Waiting… 

acquiring 

true 

Swap tail 

false 

releasing 
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• As soon as the pointer to the successor is set, the purple thread can 
release the lock 

MCS Lock: Unlocking Explained 

The lock 
is mine! 

Set my successor’s 
QNode to false! 

acquired 

false 

tail 

false 

released 
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MCS Queue Lock 

  ...  
 
  public void unlock() { 
 if (qnode.next == null) { 
   if (tail.CAS(qnode, null)) 
     return; 
   while (qnode.next == null) {} 
  } 
 qnode.next.locked = false; 
  } 
} 

Missing successor? 

If really no successor, 
tail = null 

Otherwise, wait for 
successor to catch up 

Pass lock to successor 
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Abortable Locks 

 

• What if you want to give up waiting for a lock? 

• For example 

– Time-out 

– Database transaction aborted by user 

 

• Back-off Lock 

– Aborting is trivial: Just return from lock() call! 

– Extra benefit: No cleaning up, wait-free, immediate return 

 

• Queue Locks 

– Can’t just quit: Thread in line behind will starve 

– Need a graceful way out… 
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Problem with Queue Locks 

spinning 

true false false 

released 

spinning 

true true false 

acquired 

…? 

aborted 
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Abortable MCS Lock 

 

• A mechanism is required to recognize and remove aborted threads 

– A thread can set a flag indicating that it aborted 

– The predecessor can test if the flag is set 

 

– If the flag is set, its new successor is the successor’s successor 

– How can we handle concurrent aborts? This is not discussed in this lecture 

spinning 

true true false 

acquired aborted 

Spinning on 
remote object…?! 
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Composite Locks 

 

• Queue locks have many advantages 

– FIFO fairness, fast lock release, low contention 

 but require non-trivial protocols to handle aborts (and recycling of nodes) 

• Backoff locks support trivial time-out protocols 

 but are not scalable and may have slow lock release times 

 

• A composite lock combines the best of both approaches! 

• Short fixed-sized array of lock nodes 

• Threads randomly pick a node and try 
to acquire it 

• Use backoff mechanism to acquire a node 

• Nodes build a queue 

• Use a queue lock mechanism to acquire the lock 
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One Lock To Rule Them All? 

 

• TTAS+Backoff, MCS, Abortable MCS… 

• Each better than others in some way 

• There is not a single best solution 

• Lock we pick really depends on 

–  the application 

–  the hardware 

–  which properties are important 
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Handling Multiple Threads 

 

• Adding threads should not lower the throughput 

– Contention effects can mostly be fixed by Queue locks 

 

• Adding threads should increase throughput 

– Not possible if the code is inherently sequential 

– Surprising things are parallelizable! 

 

• How can we guarantee consistency if there are many threads? 
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Coarse-Grained Synchronization 

 

• Each method locks the object 

– Avoid contention using queue locks  

– Mostly easy to reason about 

– This is the standard Java model (synchronized blocks and methods) 

 

• Problem: Sequential bottleneck 

– Threads “stand in line” 

– Adding more threads does not improve throughput 

– We even struggle to keep it from getting worse… 

 

• So why do we even use a multiprocessor? 

– Well, some applications are inherently parallel… 

– We focus on exploiting non-trivial parallelism 
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Exploiting Parallelism 

 

• We will now talk about four “patterns” 

– Bag of tricks … 

– Methods that work more than once … 

 

• The goal of these patterns are 

– Allow concurrent access 

– If there are more threads, the throughput increases! 
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Pattern #1: Fine-Grained Synchronization 

 

• Instead of using a single lock split the concurrent object into 
independently-synchronized components 

 

• Methods conflict when they access 

– The same component 

– At the same time 
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Pattern #2: Optimistic Synchronization 

 

• Assume that nobody else wants to access your part of the concurrent 
object 

• Search for the specific part that you want to lock without locking any 
other part on the way 

• If you find it, try to lock it and perform your operations 

– If you don’t get the lock, start over! 

 

• Advantage 

– Usually cheaper than always assuming that there may be a conflict due to a 
concurrent access 
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Pattern #3: Lazy Synchronization 

 

• Postpone hard work! 

 

• Removing components is tricky 

– Either remove the object physically 

– Or logically: Only mark component to be deleted 
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Pattern #4: Lock-Free Synchronization 

 

• Don’t use locks at all! 

– Use compareAndSet() & other RMW operations! 

 

• Advantages 

– No scheduler assumptions/support 

 

• Disadvantages 

– Complex 

– Sometimes high overhead 
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Illustration of Patterns 

 

• In the following, we will illustrate these patterns using a list-based set 

– Common application 

– Building block for other apps 

 

• A set is a collection of items 

– No duplicates 

 

• The operations that we want to allow on the set are 

– add(x) puts x into the set 

– remove(x) takes x out of the set 

– contains(x) tests if x is in the set 
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The List-Based Set 

 

• We assume that there are sentinel nodes at the beginning (head) and end 
(tail) of the linked list 

 

 

 

• Add node b: 

 

 

 

 

• Remove node b: 

a c d 

b 

a b c 

a c d 
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Coarse-Grained Locking 

 

• A simple solution is to lock the entire list for each operation 

– E.g., by locking the head 

 

 

 

 

 

 

 

 

• Simple and clearly correct! 

• Works poorly with contention… 

a c d 

b 
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Fine-Grained Locking 

 

• Split object (list) into pieces (nodes) 

– Each piece (each node in the list) has its own lock 

– Methods that work on disjoint pieces need not exclude each other 

 

 

 

 

 

 

 

• Hand-over-hand locking: Use two locks when traversing the list 

– Why two locks?  

a c d 

b 



7/77 

Problem with One Lock 

 

• Assume that we want to delete node c 

• We lock node b and set its next pointer to the node after c 

 

 

 

 

 

• Another thread may concurrently delete node b by setting the next 
pointer from node a to node c 

b a c 

b a c 

Hooray, I’m 
not deleted! 
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Insight 

 

• If a node is locked, no one can delete the node’s successor 

 

• If a thread locks 

– the node to be deleted 

– and also its predecessor 

• then it works! 

 

• That’s why we (have to) use two locks! 
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Hand-Over-Hand Locking: Removing Nodes 

 

• Assume that two threads want to remove the nodes b and c 

• One thread acquires the lock to the sentinel, the other has to wait 

Remove 
node b! 

a b c 

Remove 
node c! 
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Hand-Over-Hand Locking: Removing Nodes 

 

• The same thread that acquired the sentinel lock can then lock the next 
node 

a b c 

Remove 
node b! 

Remove 
node c! 
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Hand-Over-Hand Locking: Removing Nodes 

 

• Before locking node b, the sentinel lock is released 

• The other thread can now acquire the sentinel lock 

a b c 

Remove 
node b! 

Remove 
node c! 
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Hand-Over-Hand Locking: Removing Nodes 

 

• Before locking node c, the lock of node a is released 

• The  other thread can now lock node a 

a b c 

Remove 
node b! 

Remove 
node c! 
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Hand-Over-Hand Locking: Removing Nodes 

 

• Node c can now be removed 

• Afterwards, the two locks are released 

Remove 
node b! 

Remove 
node c! 

a b c 
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Hand-Over-Hand Locking: Removing Nodes 

 

• The other thread can now lock node b and remove it 

Remove 
node b! 

a b 
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List Node 

public class Node { 
  public T item; 
  public int key; 
  public Node next; 
} 

Item of interest 

Usually a hash code 

Reference to next node 
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Remove Method 

public boolean remove(Item item) { 
  int key = item.hashCode(); 
  Node pred, curr; 
  try { 
 pred = this.head; 
 pred.lock(); 
 curr = pred.next; 
 curr.lock(); 
  
 ... 
 
  } finally { 
   curr.unlock(); 
   pred.unlock(); 
  } 
} 

Start at the head and lock it 

Lock the current node 

Make sure that the 
locks are released 

Traverse the list and 
remove the item 

On the 
next slide! 
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Remove Method 

 while (curr.key <= key) { 
   if (item == curr.item) { 
     pred.next = curr.next; 
     return true; 
   } 
   pred.unlock(); 
   pred = curr; 
   curr = curr.next; 
   curr.lock(); 
 } 
 return false; 

Search key range 

If item found, 
remove the node 

Unlock pred and 
lock the next node 

Return false if the element is not present 
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Why does this work? 

 

• To remove node e 

– Node e must be locked 

– Node e’s predecessor must be locked 

• Therefore, if you lock a node 

– It can’t be removed 

– And neither can its successor 

 

• To add node e 

– Must lock predecessor 

– Must lock successor 

• Neither can be deleted 

– Is the successor lock actually required? 
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Drawbacks 

 

• Hand-over-hand locking is sometimes better than coarse-grained locking 

– Threads can traverse in parallel 

– Sometimes, it’s worse! 

 

• However, it’s certainly not ideal 

– Inefficient because many locks must be acquired and released 

 

• How can we do better? 
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Optimistic Synchronization 

 

• Traverse the list without locking! 

a b d 

Add 
node c! 

Found the 
position! 
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Optimistic Synchronization: Traverse without Locking 

 

• Once the nodes are found, try to lock them 

• Check that everything is ok 

a b d 

Add 
node c! 

Lock them! 

Is everything ok? 

What could 
go wrong…? 
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Optimistic Synchronization: What Could Go Wrong? 

 

• Another thread may lock nodes a and b and remove b before node c is 
added  If the pointer from node b is set to node c, then node c is not 
added to the list! 

a b d 

Add 
node c! 

Remove b! 
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Optimistic Synchronization: Validation #1 

 

• How can this be fixed? 

• After locking node b and node d, traverse the list again to verify that b is 
still reachable 

a b d 

Add 
node c! 

Node b can still 
be reached! 
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Optimistic Synchronization: What Else Could Go Wrong? 

 

• Another thread may lock nodes b and d and add a node b’ before node c 
is added  By adding node c, the addition of node b’ is undone! 

a b d 

Add 
node c! 

Add b’! 

b' 
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Optimistic Synchronization: Validation #2 

 

• How can this be fixed? 

• After locking node b and node d, also check that node b still points to 
node d! 

a b d 

Add 
node c! 

The pointer is 
still correct… 
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Optimistic Synchronization: Validation 

private boolean validate(Node pred,Node curr) { 
  Node node = head; 
  while (node.key <= pred.key) { 
 if (node == pred) 
   return pred.next == curr; 
 node = node.next; 
  } 
  return false; 
} 

If pred is reached, 
test if the 

successor is curr 

Predecessor not reachable 
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Optimistic Synchronization: Remove 

private boolean remove(Item item) { 
  int key = item.hashCode(); 
  while (true) { 
 Node pred = this.head; 
 Node curr = pred.next; 
 while (curr.key <= key) { 
   if (item == curr.item) 
     break; 
   pred = curr; 
   curr = curr.next; 
 } 
 ... 

Retry on synchronization 
conflict 

Stop if we find the item 
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Optimistic Synchronization: Remove 

 ... 
 try { 
   pred.lock(); curr.lock(); 
   if (validate(pred,curr)) { 
     if (curr.item == item) { 
       pred.next = curr.next; 
       return true; 
     } else { 
       return false; 
     } 
   } 
 } finally { 
   pred.unlock(); 
   curr.unlock(); 
 } 
  } 
} 

Lock both nodes 

Check for 
synchronization conflicts 

Remove node if 
target found 

Always unlock the nodes 
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Optimistic Synchronization 

 

• Why is this correct? 

– If nodes b and c are both locked, node b still accessible, and node c still the 
successor of node b, then neither b nor c will be deleted by another thread 

– This means that it’s ok to delete node c! 

 

• Why is it good to use optimistic synchronization? 

– Limited hot-spots: no contention on traversals 

– Fewer lock acquisitions and releases 

 

• When is it good to use optimistic synchronization? 

– When the cost of scanning twice without locks is less than the cost of 
scanning once with locks 

 

• Can we do better? 

– It would be better to traverse the list only once… 
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Lazy Synchronization 

 

• Key insight 

– Removing nodes causes trouble 

– Do it “lazily” 

 

• How can we remove nodes “lazily”? 

– First perform a logical delete: Mark current node as removed (new!) 

 

 

 

– Then perform a physical delete: Redirect predecessor’s next (as before) 

b b 
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Lazy Synchronization 

 

• All Methods 

– Scan through locked and marked nodes 

– Removing a node doesn’t slow down other method calls… 

 

• Note that we must still lock pred and curr nodes! 

 

• How does validation work? 

– Check that neither pred nor curr are marked 

– Check that pred points to curr 
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Lazy Synchronization 

 

• Traverse the list and then try to lock the two nodes 

• Validate! 

• Then, mark node c and change the predecessor’s next pointer 

Remove
node c! 

Check that b and c 
are not marked and 

that b points to c 

b c a 
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Lazy Synchronization: Validation 

private boolean validate(Node pred,Node curr) { 
  return !pred.marked && !curr.marked && 
  pred.next == curr; 
} 

Nodes are not 
logically removed 

Predecessor still 
points to current 



7/104 

Lazy Synchronization: Remove 

public boolean remove(Item item) { 
  int key = item.hashCode(); 
  while (true) { 
 Node pred = this.head; 
 Node curr = pred.next; 
 while (curr.key <= key) { 
   if (item == curr.item) 
     break; 
   pred = curr; 
   curr = curr.next; 
 } 
 ... 

This is the same as before! 
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Lazy Synchronization: Remove 

 ... 
 try { 
   pred.lock(); curr.lock(); 
   if (validate(pred,curr)) { 
     if (curr.item == item) { 
       curr.marked = true; 
       pred.next = curr.next; 
       return true; 
     } else { 
       return false; 
     } 
   } 
 } finally { 
   pred.unlock(); 
   curr.unlock(); 
 } 
  } 
} 

Check for 
synchronization conflicts 

If the target is found, 
mark the node and 

remove it 
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Lazy Synchronization: Contains 

public boolean contains(Item item) { 
  int key = item.hashCode(); 
  Node curr = this.head; 
  while (curr.key < key) { 
 curr = curr.next; 
  } 
  return curr.item == item && !curr.marked; 

Traverse without locking 
(nodes may have been 

removed) 

Is the element present and not marked? 
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Evaluation 

 

• Good 
– The list is traversed only once without locking 

– Note that contains() doesn’t lock at all! 

– This is nice because typically contains() is called much more often than add() 
or remove() 

– Uncontended calls don’t re-traverse 

• Bad 
– Contended add() and remove() calls do re-traverse 

– Traffic jam if one thread delays 

 

• Traffic jam? 

– If one thread gets the lock and experiences a cache miss/page fault, every 
other thread that needs the lock is stuck! 

– We need to trust the scheduler…. 
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Reminder: Lock-Free Data Structures 

 

• If we want to guarantee that some thread will 
eventually complete a method call, even if other 
threads may halt at malicious times, then the 
implementation cannot use locks! 

 

• Next logical step: Eliminate locking entirely! 

• Obviously, we must use some sort of RMW method 

• Let’s use compareAndSet() (CAS)! 



7/109 

Remove Using CAS 

 

• First, remove the node logically (i.e., mark it) 

• Then, use CAS to change the next pointer 

• Does this work…? 

Remove
node c! 

b c a 
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Remove Using CAS: Problem 

 

• Unfortunately, this doesn’t work! 

• Another node d may be added before node c is physically removed 

• As a result, node d is not added to the list… 

Remove
node c! 

Add 
node d! 

b c a 

d 
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Solution 

 

• Mark bit and next pointer are “CASed together” 

• This atomic operation ensures that no node can cause a conflict by adding 
(or removing) a node at the same position in the list 

Remove
node c! 

Node c 
has been 
removed! 

b c a 

d 
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Solution 

 

• Such an operation is called an atomic markable reference 

– Atomically update the mark bit and redirect the predecessor’s next pointer 

 

• In Java, there’s an AtomicMarkableReference class 

– In the package Java.util.concurrent.atomic package 

 

address false mark bit Reference 

Updated atomically 
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Changing State 

private Object ref; 
private boolean mark; 
 
public synchronized boolean compareAndSet( 
Object expectedRef, Object updateRef, 
boolean expectedMark, boolean updateMark) { 
 
  if (ref == expectedRef && mark == expectedMark){ 
 ref = updateRef; 
 mark = updateMark; 
  } 
} 

The reference to the next 
Object and the mark bit 

If the reference and the mark are as 
expected, update them atomically 



7/114 

Removing a Node 

 

• If two threads want to delete the nodes b and c, both b and c are marked 

• The CAS of the red thread fails because node b is marked! 

• (If node b is not marked, then b is removed first and there is no conflict)  

Remove
node b! 

remove
node c! 

b c a 

CAS CAS 
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Traversing the List 

 

• Question: What do you do when you find a “logically” deleted node in 
your path when you’re traversing the list? 
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Lock-Free Traversal 

 

• If a logically deleted node is encountered, CAS the predecessor’s next 
field and proceed (repeat as needed) 

CAS! 

b c a 

CAS 
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Performance 

 

• The throughput of the presented techniques has been measured for a 
varying percentage of contains() method calls 

– Using a benchmark on a 16 node shared memory machine 

 

Ops/sec (32 threads) 
Lock-free  

Lazy 

Coarse Grained 
Fine Grained 

% contains() 

106 

8∙106 

0        10       20      30       40       50       60      70       80       90 
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Low Ratio of contains() 

Lock-free  

Lazy 

Coarse Grained 
Fine Grained 

# Threads 

Ops/sec (50% read) 

0          5            10            15          20           25            30 

3.5∙106 

3∙106 

2.5∙106 

1.5∙106 

5∙105 

2∙106 

1∙106 

 

• If the ratio of contains() is low, the lock-free linked list and the linked list 
with lazy synchronization perform well even if there are many threads 
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High Ratio of contains() 

Lock-free  
Lazy 

Coarse Grained 
Fine Grained 

0           5             10           15            20           25            30 

# Threads 

1.2∙107 

1∙107 

8∙106 

6∙106 

4∙106 

2∙106 

Ops/sec (90% reads) 

 

• If the ratio of contains() is high, again both the lock-free linked list and the 
linked list with lazy synchronization perform well even if there are many 
threads 
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“To Lock or Not to Lock” 

 

• Locking vs. non-blocking: Extremist views on both sides 

• It is nobler to compromise by combining locking and non-blocking 
techniques 

– Example: Linked list with lazy synchronization combines blocking add() and 
remove() and a non-blocking contains() 

– Blocking/non-blocking is a property of a method 
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Linear-Time Set Methods 

 

• We looked at a number of ways to make highly-concurrent list-based sets 
– Fine-grained locks 

– Optimistic synchronization 

– Lazy synchronization 

– Lock-free synchronization 

 

• What’s not so great? 

– add(), remove(), contains() take time linear in the set size 

 

• We want constant-time methods! 

– At least on average… 

How…? 
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Hashing 

 

• A hash function maps the items to integers  

– h: items  integers  

• Uniformly distributed 

– Different items “most likely” have different hash values 

 

• In Java there is a hashCode() method 
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0 

1 

2 

3 

16 

9 

h(k) = k mod 4 
buckets 

Sequential Hash Map 

 

• The hash table is implemented as an array of buckets, each pointing to a 
list of items 

 

 

 

 

 

 

 

 

• Problem: If many items are added, the lists get long  Inefficient 
lookups! 

• Solution: Resize! 

7 

4 

15 

28 
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0 

1 

2 

3 

16 

9 

h(k) = k mod 8 

Resizing 

 

• The array size is doubled and the hash function adjusted 

7 

4 

15 

28 

4 

5 

6 

7 

Grow the array 

New hash function 
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0 

1 

2 

3 

16 

9 

h(k) = k mod 8 

Resizing 

 

• Some items have to be moved to different buckets! 

7 

4 

15 

28 

4 

5 

6 

7 

4 28 

7 15 
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Hash Sets 

 

• A hash set implements a set object 

– Collection of items, no duplicates 

– add(), remove(), contains() methods 

 

• More coding ahead! 
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Simple Hash Set 

public class SimpleHashSet { 
  protected LockFreeList[] table; 
 
  public SimpleHashSet(int capacity) { 
 table = new LockFreeList[capacity]; 
 for (int i = 0; i < capacity; i++) 
   table[i] = new LockFreeList(); 
  } 
  
  public boolean add(Object key) { 
 int hash = key.hashCode() % table.length; 
 return table[hash].add(key); 

Array of lock-free lists 

Initial size 

Initialization 

Use hash of object to pick a bucket 
and call bucket’s add() method 
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Simple Hash Set: Evaluation 

 

• We just saw a 

– Simple 

– Lock-free 

– Concurrent 

 hash-based set implementation 

 

• But we don’t know how to resize… 

 

• Is Resizing really necessary? 

– Yes, since constant-time method calls require constant-length buckets and a 
table size proportional to the set size 

– As the set grows, we must be able to resize 
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Set Method Mix 

 

• Typical load 

– 90% contains() 

– 9% add () 

– 1% remove() 

• Growing is important, shrinking not so much 

 

• When do we resize? 

• There are many reasonable policies, e.g., pick a threshold on the number 
of items in a bucket 

• Global threshold 

– When, e.g., ≥ ¼ buckets exceed this value 

• Bucket threshold 

– When any bucket exceeds this value 
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Coarse-Grained Locking 

 

• If there are concurrent accesses, how can we safely resize the array? 

 

• As with the linked list, a straightforward solution is to use coarse-grained 
locking: lock the entire array! 

 

• This is very simple and correct 

• However, we again get a sequential bottleneck… 

 

• How about fine-grained locking? 



7/131 

0 

1 

2 

3 

4 

9 

h(k) = k mod 4 

Fine-Grained Locking 

 

• Each lock is associated with one bucket 

 

 

 

 

 

 

 

 

 

• After acquiring the lock of the list, insert the item in the list! 

7 

8 

11 

17 
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0 

1 

2 

3 

4 

9 

h(k) = k mod 4 

Fine-Grained Locking: Resizing 

 

• Acquire all locks in ascending order and make sure that the table 
reference didn’t change between resize decision and lock acquisition! 

7 

8 

11 

17 

Table reference 
didn’t change? 
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0 

1 

2 

3 

4 

9 

h(k) = k mod 4 

Fine-Grained Locking: Resizing 

 

• Allocate a new table and copy all elements 

7 

8 

11 

17 
8 

4 

9 17 

11 

7 

0 

1 

2 

3 

4 

5 

6 

7 
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0 

1 

2 

3 

h(k) = k mod 8 

Fine-Grained Locking: Resizing 

 

• Stripe the locks: Each lock is now associated with two buckets 

• Update the hash function and the table reference 

0 

1 

2 

3 

4 

5 

6 

7 

8 

4 

9 17 

11 

7 
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Observations 

 

• We grow the table, but we don’t increase the number of locks 

– Resizing the lock array is tricky … 

• We use sequential lists (coarse-grained locking) 

– No lock-free list 

– If we’re locking anyway, why pay? 
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Fine-Grained Hash Set 

public class FGHashSet { 
  protected RangeLock[] lock; 
  protected List[] table; 
 
  public FGHashSet(int capacity) { 
 table = new List[capacity]; 
 lock = new RangeLock[capacity]; 
 for (int i = 0; i < capacity; i++){ 
   lock[i] = new RangeLock();   
   table[i] = new LinkedList(); 
  } 
  } 

Array of locks 
Array of buckets 

Initially the same 
number of locks 

and buckets 
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Fine-Grained Hash Set: Add Method 

  public boolean add(Object key) { 
 int keyHash = key.hashCode() % lock.length; 
 synchronized(lock[keyHash]) { 
   int tableHash = key.hashCode() % table.length; 
   return table[tableHash].add(key); 
 } 
  } 

Acquire the 
right lock 

Call the add() method of 
the right bucket 
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Fine-Grained Hash Set: Resize Method 

  public void resize(int depth, List[] oldTable) { 
 synchronized (lock[depth]) { 
   if (oldTable == this.table) { 
     int next = depth + 1; 
     if (next < lock.length) 
       resize(next, oldTable); 
     else 
       sequentialResize(); 
   } 
 } 
  } 
} 

Resize() calls 
resize(0,this.table) 

Acquire the next 
lock and check 

that no one else 
has resized 

Recursively acquire 
the next lock 

Once the locks are 
acquired, do the work 
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Fine-Grained Locks: Evaluation 

 

• We can resize the table, but not the locks 

• It is debatable whether method calls are constant-time in presence of 
contention … 

 

• Insight: The contains() method does not modify any fields 

– Why should concurrent contains() calls conflict? 
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Read/Write Locks 

  public interface ReadWriteLock { 
 Lock readLock(); 
 Lock writeLock(); 
  } 

Return the associated read lock 

Return the associated write lock 
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Lock Safety Properties 

 

• No thread may acquire the write lock 

– while any thread holds the write lock 

– or the read lock 

• No thread may acquire the read lock 

–  while any thread holds the write lock 

• Concurrent read locks OK 

 

• This satisfies the following safety properties 

– If readers > 0 then writer == false 

– If writer = true then readers == 0 
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Read/Write Lock: Liveness 

 

• How do we guarantee liveness? 

– If there are lots of readers, the writers may be locked out! 

 

• Solution: FIFO Read/Write lock 

– As soon as a writer requests a lock, no more readers are accepted 

– Current readers “drain” from lock and the writers acquire it eventually 
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Optimistic Synchronization 

 

• What if the contains() method scans without locking…? 

 

• If it finds the key 

– It is ok to return true! 

– Actually requires a proof… 

 

• What if it doesn’t find the key? 

– It may be a victim of resizing… 

– Get a read lock and try again! 

– This makes sense if it is expected (?) that the key is there and resizes are 
rare… 

– Better: Check if the table size is the same before and after the method call! 

We won’t discuss 
this in this lecture 
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Stop The World Resizing 

 

• The resizing we have seen up till now stops all concurrent operations 

• Can we design a resize operation that will be incremental? 

• We need to avoid locking the table… 

 

• We want a lock-free table with incremental resizing! 
How…? 
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Lock-Free Resizing Problem 

 

• In order to remove and then add even a single item, “single location CAS” 
is not enough… 

0 

1 

2 

3 

16 

9 

7 

4 

15 

28 

4 

5 

6 

7 

We need to extend the table! 

4 28 
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Idea: Don’t Move the Items 

 

• Move the buckets instead of the items! 

• Keep all items in a single lock-free list 

• Buckets become “shortcut pointers” into the list 

0 

1 

2 

3 

16 4 28 5 9 15 
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Recursive Split Ordering 

 

• Example: The items 0 to 7 need to be hashed into the table 

• Recursively split the list the buckets in half: 

 

 

 

 

 

 

 

 

• The list entries are sorted in an order that allows recursive splitting 

0 

1 

1/2 

2 

3 

1/4 3/4 

0 4 2 6 1 5 3 7 

How…? 
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Recursive Split Ordering 

 

• Note that the least significant bit (LSB) is 0 in the first half and 1 in the 
other half! The second LSB determines the next pointers etc. 

0 

1 

LSB = 1 

2 

3 

LSB = 0 

0 4 2 6 1 5 3 7 

LSB = 00 LSB = 10 LSB = 01 LSB = 11 
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Split-Order 

 

• If the table size is 2i: 

– Bucket b contains keys k = b mod 2i  

– The bucket index consists of the key's i least significant bits 

 

• When the table splits: 
– Some keys stay (b = k mod 2i+1) 

– Some keys move (b+2i = k mod2i+1) 

 

• If a key moves is determined by the (i+1)st bit 
– counting backwards 
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A Bit of Magic 

 

• We need to map the real keys to the split-order 

• Look at the reversed binary representation of the keys and the indices 

• The real keys: 

 

 

 

 

• Split-order: 

 

 

 

 

• Just reverse the order of the key bits in order to get the index! 

0 1 2 3 4 5 6 7 

0 4 2 6 1 5 3 7 

000 100 010 110 001 101 011 111 

000 001 010 011 100 101 110 111 

Real key 1 is at index 4! 
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Split Ordered Hashing 

 

• After a resize, the new pointers are found by searching for the right index 

 

 

 

 

 

 

 

 

 

 

• A problem remains: How can we remove a node by means of a CAS if two 
sources point to it? 

0 

1 

2 

3 

0 4 2 6 1 5 3 7 
000 001 010 011 100 101 110 111 

Order according to reversed bits  

2 pointers to some nodes! 
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Sentinel Nodes 

 

• Solution: Use a sentinel node for each bucket 

 

 

 

 

 

 

 

 

 

• We want a sentinel key for i 

– before all keys that hash to bucket i 

– after all keys that hash to bucket (i-1) 

0 

1 

2 

3 

0 16 4 1 9 3 7 15 
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Initialization of Buckets 

 

• We can now split a bucket in a lock-free manner using two CAS() calls 

• Example: We need to initialize bucket 3 to split bucket 1!  

 

0 

1 

2 

3 

0 16 4 1 9 

3 

7 15 
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Adding Nodes 

 

• Example: Node 10 is added 

• First, bucket 2 (= 10 mod 4) must be initialized, then the new node is 
added 

0 

1 

2 

3 

0 16 4 1 9 3 7 15 

2 10 



7/155 

Recursive Initialization 

 

• It is possible that buckets must be initialized recursively 

• Example: When node 7 is added, bucket 3 (= 7 mod 4) is initialized and 
then bucket 1 (= 3 mod 2) is also initialized 

 

 

 

 

 

 

 

 

• Note that ≈ log n empty buckets may be initialized if one node is added, 
but the expected depth is constant! 

0 

1 

2 

3 

0 8 12 1 7 3 

n = number of nodes 
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Lock-Free List 

private int makeRegularKey(int key) { 
  return reverse(key | 0x80000000); 
} 
 
private int makeSentinelKey(int key) { 
  return reverse(key); 
} 

Set high-order bit 
to 1 and reverse 

Simply reverse 
(high-order bit is 0) 
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Split-Ordered Set 

public class SOSet{ 
  protected LockFreeList[] table; 
  protected AtomicInteger tableSize; 
  protected AtomicInteger setSize; 
 
  public SOSet(int capacity) { 
 table = new LockFreeList[capacity]; 
 table[0] = new LockFreeList(); 
    tableSize = new AtomicInteger(1); 
 setSize = new AtomicInteger(0); 
} 

This is the lock-free list 
(slides 116-124) with 
minor modifications 

Track how much of 
the table is used and 

the set size so that 
we know when to 

resize 

Initially use 1 bucket 
and the size is zero 
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Split-Ordered Set: Add 

public boolean add(Object object) { 
  int hash = object.hashCode(); 
  int bucket = hash % tableSize.get(); 
  int key = makeRegularKey(hash); 
  LockFreeList list = getBucketList(bucket); 
  if (!list.add(object,key)) 
 return false; 
  resizeCheck(); 
  return true; 
} 

Pick a bucket 

Non-sentinel 
split-ordered key 

Get pointer to 
bucket’s sentinel, 

initializing if 
necessary 

Try to add with 
reversed key 

Resize if 
necessary 



7/159 

Recall: Resizing & Initializing Buckets  

 

• Resizing 

– Divide the set size by the total number of buckets 

– If the quotient exceeds a threshold, double the table size up to a fixed limit 

 

• Initializing Buckets 

– Buckets are originally null 

– If you encounter a null bucket, initialize it 

– Go to bucket’s parent (earlier nearby bucket) and recursively initialize if 
necessary 

– Constant expected work! 
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Split-Ordered Set: Initialize Bucket 

public void initializeBucket(int bucket) { 
  int parent = getParent(bucket); 
  if (table[parent] == null) 
 initializeBucket(parent); 
  int key = makeSentinelKey(bucket); 
  table[bucket] = new 
    LockFreeList(table[parent],key); 
} 

Find parent, 
recursively 

initialize if needed 

Prepare key for 
new sentinel 

Insert sentinel if not present and 
return reference to rest of list 
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Correctness 

 

• Split-ordered set is a correct, linearizable, concurrent set 
implementation 

 

• Constant-time operations! 

– It takes no more than O(1) items between two dummy nodes on average 

– Lazy initialization causes at most O(1) expected recursion depth in 
initializeBucket() 
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Empirical Evaluation 

 

• Evaluation has been performed on a 30-processor Sun Enterprise 3000 

• Lock-Free vs. fine-grained (Lea) optimistic locking 

• In a non-multiprogrammed environment 

• 106 operations: 88% contains(), 10% add(), 2% remove() 
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Empirical Evaluation 

 

• Expected bucket length 

– The load factor is the capacity 
of the individual buckets 

 

 

 

 

 

• Varying The Mix 

– Increasing the number of updates 

o
p

s/
ti

m
e 

Load factor 

locking 

lock-free 

o
p

s/
ti

m
e 

locking 

lock-free 

More reads More updates 
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Additional Performance   

 

• Additionally, the following parameters have been analyzed: 

– The effects of the choice of locking granularity  

– The effects of the bucket size 
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Number of Fine-Grain Locks 

(Lea = fine-grained optimistic locking) 
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Lock-free vs. Locks 
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Hash Table Load Factor 

(load factor = nodes per bucket) 
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Varying Operations 
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Conclusion 

 

• Concurrent resizing is tricky 

• Lock-based 

– Fine-grained 

– Read/write locks 

– Optimistic 

• Lock-free 

– Builds on lock-free list 
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Summary 

 

• We talked about several locking mechanisms 

• In particular we have seen 

– TAS & TTAS 

– Alock & backoff lock 

– MCS lock & abortable MCS lock 

• We also talked about techniques to deal with concurrency in linked lists 

– Hand-over-hand locking 

– Optimistic synchronization 

– Lazy synchronization 

– Lock-free synchronization 

• Finally, we talked about hashing 

– Fine-grained locking 

– Recursive split ordering 
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That’s all, folks! 
Questions & Comments? 

 
 
 
 


