Locking

Part 2, Chapter 7

Ty
>'%

ETH Zurich — Distributed Computing — www.disco.ethz.ch

Roger Wattenhofer

Overview

e Introduction

e Spin Locks
— Test-and-Set & Test-and-Test-and-Set
— Backoff lock
— Queue locks

e Concurrent Linked List
— Fine-grained synchronization
— Optimistic synchronization
— Lazy synchronization
— Lock-free synchronization

e Hashing
— Fine-grained locking
— Recursive split ordering

Concurrent Computation

e \We started with...

e Multiple threads
— Sometimes called processes

s
e Single shared memory memory
e QObjects live in memory (
e Unpredictable asynchronous delays I\
- = = = = = v,

e Previously, we focused on fault-tolerance

— In Chapter 1, we discussed theoretical results
— In Chapter 2, we discussed practical solutions with a focus on efficiency

e |n this chapter, we focus on efficient concurrent computation!

— Focus on asynchrony and not on explicit failures

Example: Parallel Primality Testing

e Challenge

— Print all primes from 1 to 10%°
e Given

— Ten-core multiprocessor

— One thread per processor
e Goal

— Get ten-fold speedup (or close)

* Naive Approach Problems with
— Splitthe work evenly this approach?

— Each thread tests range of 10°

1 10° 2i109

Issues

e Higher ranges have fewer primes
e Yet larger numbers are harder to test

e Thread workloads
— Uneven
— Hard to predict

e Need dynamicload balancing

e Better approach

— Shared counter!

— Each thread takes a number

Procedure Executed at each Thread

Counter counter = new Counter(l);

void primePrint() { .
long j = O; Shared counter object

while(j < 1019) {

j = counter.getAndIncrement();

1f(isPrime(j))
print(j);

Increment counter & test
if returnvalueis prime

Counter Implementation

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

}

What’s the problem with
this implementation?

Problem

value...

read write
2

1

read

time

2

read

N

write

Counter Implementation

public class Counter {
private long value;
public long getAndIncrement() {
[temp = value; !
value = temp + 1; These steps must
return temp; :
1 be atomic!

Recall: We can use Read-Modify-
Write (RMW) instructions!

We have to guarantee
mutual exclusion

Model

e The modelin this part is slightly more complicated

— However, we still focus on principles ,
l.e., multiprocessors

e Whatremains the same?
— Multipleinstruction multiple data (MIMD) architecture
— Each thread/process has its own code and local variables

— Thereis a shared memory that all threads can access m
e Whatis new?

| memory |

— Typically,communication runs over a shared bus
(alternatively, there may be several channels)

— Communication contention

— Communication latency

— Each thread has a local cache

<o
L9

T O

<o
(%
<o

Model: Where Things Reside

Counter counter = new Counter(l);

void primeprint() {
long j = 0;
while(j < 10©) {
j = counter.getAndIncrement();
if(ispPrime(3))
print(3);

Local

/ variables

Code

shared
memory

E.g., the shared
counteris here

Revisiting Mutual Exclusion

e We need mutual exclusion for our counter
e We are now going to study mutual exclusion from a different angle
— Focus on performance, not just correctness and progress

e We will begin to understand how performance depends on our software
properly utilizing the multiprocessor machine’s hardware,
and get to know a collection of locking algorithms!

e What should you do if you can’t get a lock?
e Keep trying
— “spin” or “busy-wait” Our focus
— Good if delaysare short
e Give up the processor

— Good if delaysare long
— Always good on uniprocessor

Basic Spin-Lock

Lock introduces
sequential bottleneck Huh?
- No parallelism!

Lock suffers

\@ /‘f“b from contention

> CS
. %
. spin critical Resets lock
/ lock section upon exit

Reminder: Test&Set

e Boolean value

e Test-and-set (TAS)
— Swap true with current value
— Return value tells if prior value was true or false

e (Canreset just by writing false
e Alsoknown as “getAndSet”

Reminder: Test&Set

public class AtomicBooTean!{
private boolean value;

public synchronized boolean
boolean prior = this.value;
this.value = true;
return prior;

} Get currentvalue and set

value to true

java.util.concurrent.atomic

etAndSet() {

Test&Set Locks

e Locking
— Lock is free: valueis false

— Lockis taken: valueis true

e Acquire lock by calling TAS

— If resultis false, you win
— If resultis true, you lose

e Release lock by writing false

Test&Set Lock

public class TASLock implements Lock {

AtomicBoolean state = new AtomicBoolean(false);
N\

public void lock() { Lock state is AtomicBoolean
while (state.getAndSet()) {}

} Keep trying until

public void unlock() { lock acquired
state.set(false);
}

} Release lock by resetting state to false

Performance

e Experiment
— nthreads
— Increment shared counter 1 milliontimes

e How long should it take?
e How long does it take?

time

threads

Test&Test&Set Locks

e How can we improve TAS?
e Acrazyidea: Test before you test and set!

e Lurking stage

— Wait until lock “looks” free

— Spin while read returns true (i.e., the lock is taken)
e Pouncing state

— As soon as lock “looks” available

— Read returns false (i.e., the lock is free)
— Call TAS to acquire the lock
— If TAS loses, go backto lurking

Test&Test&Set Lock

public class TTASLock 1mplements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (true) {

while(state.get()) {}

if(!state.getAndset())

return; o
} Then try to acquire it

}

Wait until lock looks free

public void unlock() {
state.set(false);

}
}

Performance

e Both TAS and TTAS do the same thing (in our old model)
e So, we would expect basically the same results

TTAS lock

time

threads

e Why is TTAS so much better than TAS? Why are both far from ideal?

Opinion

e TAS & TTAS locks

— are provably the same (in our old model)
— except they aren’t (in field tests)

e QObviously, it must have something to do with the model...

e Let’s take a closer look at our new model and try to find a reasonable
explanation!

Bus-Based Architectures

Per-processor caches Shared bus

* Small * Broadcast medium

 Fast: 1 or 2 cycles * One broadcaster at a time

* Address and state information * Processors (and memory) “snoop”

i

cache cache | |

< == >

Random access memory
(tens of cycles)

Jargon Watch

e Load request

— When a thread wants to access data, it issues a load request
e Cache hit

— The thread found the datain its own cache
e Cache miss

— The datais not found in the cache
— The thread has to get the data from memory

Load Request

e Thread issues load request and memory responds

data...?

Got your

Another Load Request

e Another thread wants to access the same data. Get a copy from the cache!

| got data! data...”?

Modify Cached Data

e Both threads now have the data in their cache

e What happens if the red thread now modifies the data...?

L

—=——

| What'’s up with the other copies? |
| semary 0 B

Cache Coherence

e We have lots of copies of data
— Original copy in memory
— Cached copies at processors
e Some processor modifies its own copy
— What do we do with the others?
— How to avoid confusion?

Write-Back Caches

e Accumulate changes in cache
e Write back when needed

— Need the cache for somethingelse
— Another processor wants it
e On first modification
— Invalidate other entries
— Requires non-trivial protocol ...

e (Cache entry has three states:
— Invalid: contains raw bits
— Valid: | can read but | can’t write

— Dirty: Data has been modified
— Intercept other load requests

— Write back to memory before reusing cache

Invalidate

e Let’s rewind back to the moment when the red processor updates its
cached data

e |t broadcasts an invalidation message = Other processor invalidates its
cache!

Cache loses
read
permission

Invalidate

e Memory provides data only if not present in any cache, so there is no need
to change it now (this is an expensive operation!)

e Readingis not a problem = The threads get the data from the red process

8 RS

cache data cache

Bus

memory

Mutual Exclusion

e What do we want to optimize?
1. Minimizethe bus bandwidth that the spinning threads use
2. Minimizethe lock acquire/release latency
3. Minimizethe latency to acquire the lock if the lock isidle

TAS vs. TTAS

e TAS invalidates cache lines
This is why TAS

e Spinners
P performs so poorly...

— Always go to bus
e Thread wants to release lock
— delayed behind spinners!!!

e TTAS waits until lock “looks” free
— Spinon local cache
— No bus use while lock busy

e Problem: when lock is released
— Invalidationstorm ...

Huh?

Local Spinning while Lock is Busy

e While the lock is held, all contenders spin in their caches, rereading
cached data without causing any bus traffic

&

Il ETE |

< == >

On Release

e Thelock is released. All spinners take a cache miss and call Test&Set!

TAS! TAS!

.

B X

Time to Quiescence

e Every process experiences a cache miss @
— All state.get() satisfied sequentially n “:,
e Every process does TAS
— Caches of other processes are invalidated L] M‘—
e Eventual quiescence (“silence”) after @
acquiring the lock] l‘.—_>
e The time to quiescence increases
linearly with the number of processors for a bus architecture!

time

threads

Mystery Explained

e Now we understand why the TTAS lock performs much better than the
TAS lock, but still much worse than an ideal lock!

TTAS lock

time

threads

e How can we do better?

Introduce Delay

If the lock looks free, but | fail to get it, there must be lots of contention

It’s better to back off than to collide again!

e Example: Exponential Backoff

Each subsequent failure doubles expected waiting time

VS
/j i
w0

4d d spin lock

/

waiting time

Exponential Backoff Lock

public class Backoff implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {

while (true) {
while(state.get()) {}
if (!lock.getAndset())
return;

sleep(random() % delay) ;
1T (delay < MAX_DELAY) L
delay = 2 * delay;

}
}

// unlock() remains the same

int delay = MIN_DELAYy— Fixminimumdelay

Back off for
random duration

Double maximum
delay until an upper
boundisreached

Backoff Lock: Performance

e The backoff lock outperforms the TTAS lock!
e Butitisstill notideal...

TTAS lock

time

Backoff lock

threads

Backoff Lock: Evaluation

Good

— Easy to implement
— Beats TTAS lock

e Bad

— Must choose parameters carefully
— Not portableacross platforms

e How can we do better?
e Avoid useless invalidations

— By keeping a queue of threads
e Each thread

— Notifiesnext inline
— Without bothering the others

ALock: Initially

e The Anderson queue lock (ALock) is an array-based queue lock
e Threads share an atomic tail field (called next)

idle

next

flags

ALock: Acquiring the Lock

e To acquire the lock, each thread atomically increments the tail field
e |[fthe flagis true, the lock is acquired
e Otherwise, spin until the flag is true

The lock
is mine!

acquired

next

flags

ALock: Contention

e |f another thread wants to acquire the lock, it applies get&increment

=

acquired acquiring

e The thread spins because the flag is false

ALock: Releasing the Lock

e The first thread releases the lock by setting the next slot to true
e The second thread notices the change and gets the lock

The lock

released acquired ="
is mine!

ALock

One flag per thread
public class Alock 1mplements
boolean[] flags = {true,false,...,false};
AtomicInteger next = new AtomicInteger(0);
ThreadLocal<Integer> mySlot;b—__

Thread-local variable

public void lock() {

mySlot = next.getAndIncrement() ;L

while (!flags[mySlot % n]) {} Take the next slot
flags[mySlot % n] = false;

}

public void unlock() {
flags[(mySlot+l) % n] = true;L_

, } Tell next thread to go

AlLock: Performance

e Shorter handover than backoff
e Curve is practically flat

e Scalable performance

e FIFO fairness

TTAS lock

time

AlLock
ideal

threads

AlLock: Evaluation

e Good
— First truly scalable lock
— Simple, easy to implement
e Bad
— One bit per thread
— Unknown number of threads?

ALock: Alternative Technique

e The threads could update own flag and spin on their predecessor’s flag

C= =

acquiring acquiring

i i+1
flags
BEIRGIEEE

i-1 [

e This is basically what the CLH lock does, but using a linked list instead of
an array

e |[sthis agoodidea? Not discussed
in this lecture

NUMA Architectures

e Non-Uniform Memory Architecture
e |llusion

— Flat shared memory
e Truth
— No caches (sometimes)
— Some memory regions faster than others

Spinning on local memory is fast: Spinning on remote memory is slow:

MCS Lock

|dea

— Use a linked list instead of an array = small, constant-sized space
— Spin on own flag, just like the Anderson queue lock

The space usage
— L =number of locks
— N = number of threads

of the Anderson lock is O(LN)
of the MCS lock is O(L+N)

MCS Lock: Initially

e The lock is represented as a linked list of QNodes, one per thread
e The tail of the queue is shared among all threads

idle

Queue tail

tail

F—1n

MCS Lock: Acquiring the Lock

e To acquire the lock, the thread places its QNode at the tail of the list
by swapping the tail to its QNode

e |f there is no predecessor, the thread acquires the lock

acquired

The lock
is mine!
Swap tail
ﬁ
\ f

alse = lock

' -

(allocate QNode)

7/53

MCS Lock: Contention

e |If another thread wants to acquire the lock, it again applies swap
e The thread spins on its own QNode because there is a predecessor

acquired acqumng

MCS Lock: Releasing the Lock

e The first thread releases the lock by setting its successor’s QNode to false

released acquired

The lock
is mine!

tail

j_l
'“.

L

MCS Queue Lock

public class QNode {
boolean Tocked = false;
QNode next = null;

}

MCS Queue Lock

public class MCSLock implements Lock {
AtomicReference tail;

public void lock() {

QNode gnode = new QNode() ;

QNode pred = tail.getAndSet(gqnode);
(if (pred !'= null) {

gnode.locked = true; Add my node to the tail
. pred.next = gnode; o

whiTe (gnode.Tocked) {} Fix if queue was
} non-empty

}

MCS Lock: Unlocking

e |[fthere is a successor, unlock it. But, be cautious!

e Even though a QNode does not have a successor, the purple thread knows
that another thread is active because tail does not point to its QNode!

releasing acquiring

Swap tail

Waiting...

MCS Lock: Unlocking Explained

e Assoon as the pointer to the successor is set, the purple thread can

release the lock
Set my successor’s

QNode to false!

released acquired The lock

is minel
tail

j_l
'“.

MCS Queue Lock

public void unlock() { Missing successor?
if (gnode.next == null) { ;

[1' f (tail.cAs(gnode, null))]>|f really no successor,
return; tail = nulli

while (gnode.next == null) {}

}

gnode.next.locked = false; Otherwise, wait for
} . — successor to catch up

} Pass lock to successor

Abortable Locks

e Whatif you want to give up waiting for a lock?
e For example
— Time-out

— Database transaction aborted by user

e Back-off Lock
— Abortingis trivial: Just return from lock() call!

— Extra benefit: No cleaning up, wait-free, immediate return

e (Queue Locks

— Can’tjust quit: Thread in line behind will starve
— Need a graceful way out...

Problem with Queue Locks

acquired aborted spinning

BN 9.

released spinning

~[=8 B

Abortable MCS Lock

e A mechanism is required to recognize and remove aborted threads

— Athread can set a flag indicatingthat it aborted

— The predecessor can test if the flag is set Spinningon
remote object...?!

— If the flagis set, its new successor is the successor’s successor
— How can we handle concurrent aborts? Thisis not discussed in this lecture

acquired aborted spinning

Composite Locks

e Queue locks have many advantages
— FIFO fairness, fast lock release, low contention
but require non-trivial protocols to handle aborts (and recycling of nodes)
e Backoff locks support trivial time-out protocols
but are not scalable and may have slow lock release times

e A composite lock combines the best of both approaches!
e Short fixed-sized array of lock nodes

e Threads randomly pick a node and try
to acquire it

e Use backoff mechanism to acquire a node

e Nodes build a queue

e Use a queue lock mechanism to acquire the lock

One Lock To Rule Them All?

o TTAS+Backoff, MCS, Abortable MCS...
e Each better than others in some way
e There is not a single best solution

e Lock we pick really depends on
— the application
— the hardware

— which properties are important

Handling Multiple Threads

e Adding threads should not lower the throughput

— Contention effects can mostly be fixed by Queue locks
e Adding threads should increase throughput
— Not possible if the code is inherently sequential

— Surprising things are parallelizable!

e How can we guarantee consistency if there are many threads?

Coarse-Grained Synchronization

e Each method locks the object

— Avoid contention using queue locks
— Mostly easy to reason about

— Thisisthe standard Java model (synchronized blocks and methods)

e Problem: Sequential bottleneck
— Threads “standin line”
— Adding more threads does not improve throughput
— We even struggle to keep it from getting worse...

e So why do we even use a multiprocessor?

— Well, some applicationsare inherently parallel...
— We focus on exploiting non-trivial parallelism

Exploiting Parallelism

e We will now talk about four “patterns”

— Bagof tricks ...
— Methodsthat work more than once ...

e The goal of these patterns are
— Allow concurrent access
— If there are more threads, the throughput increases!

Pattern #1: Fine-Grained Synchronization

e Instead of using a single lock split the concurrent object into
independently-synchronized components

e Methods conflict when they access
— The same component
— At the same time

Pattern #2: Optimistic Synchronization

e Assumethat nobody else wants to access your part of the concurrent
object

e Search for the specific part that you want to lock without locking any
other part on the way

e Ifyou find it, try to lock it and perform your operations
— If youdon’t get the lock, start over!

e Advantage

— Usually cheaper than always assuming that there may be a conflictdue to a
concurrent access

Pattern #3: Lazy Synchronization

e Postpone hard work!

e Removing components is tricky
— Either remove the object physically
— Or logically:Only mark component to be deleted

Pattern #4: Lock-Free Synchronization

e Don’tuse locks at all!
— Use compareAndSet() & other RMW operations!

e Advantages
— No schedulerassumptions/support

e Disadvantages
— Complex
— Sometimes high overhead

lllustration of Patterns

e Inthe following, we will illustrate these patterns using a list-based set
— Common application
— Buildingblock for other apps

e Asetis a collection of items
— No duplicates

e The operations that we want to allow on the set are
- add (x) puts X into the set
— remove (X) takesX out of the set
— contains (x) testsif X is in the set

The List-Based Set

e We assumethat there are sentinel nodes at the beginning (head) and end
(tail) of the linked list

e Add node b:

([F=>(T)

e Remove node b:

(T3]~ A -H8

Coarse-Grained Locking

e Asimple solution is to lock the entire list for each operation
— E.g., by locking the head

e Simple and clearly correct!
e Works poorly with contention...

Fine-Grained Locking

e Split object (list) into pieces (nodes)
— Each piece (each node in the list) has its own lock
— Methodsthat work on disjoint pieces need not exclude each other

e Hand-over-hand locking: Use two locks when traversing the list
— Why two locks?

Problem with One Lock

e Assumethat we want to delete node c
e We lock node b and set its next pointer to the node after c

e Another thread may concurrently delete node b by setting the next
pointer from node a to node ¢

Hooray, I'm

6 not deleted!

Insight

If a node is locked, no one can delete the node’s successor

If a thread locks
— the node to be deleted
— and also its predecessor

then it works!

That’s why we (have to) use two locks!

Hand-Over-Hand Locking: Removing Nodes

e Assumethat two threads want to remove the nodes b and c
e One thread acquires the lock to the sentinel, the other has to wait

(L=l 3= (13—

Remove
node c!

Ukl

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e The same thread that acquired the sentinel lock can then lock the next
node

(=G>l (131

Remove
node c!

Ukl

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e Before locking node b, the sentinel lock is released
e The other thread can now acquire the sentinel lock

(=G>l (131

Remove
node c!

Ukl

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e Before locking node c, the lock of node a is released
e The other thread can now lock node a

(L= G333

Remove
node c!

Ukl

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e Node c can now be removed
e Afterwards, the two locks are released

%CD

Remove
node c!

Ukl

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e The other thread can now lock node b and remove it

Remove
node b!

List Node

public class Node { |tem ofinterest
public T item;
public int key;—— Usuallyahash code

ubTic Node next;L.
} P Reference to next node

Remove Method

public boolean remove(Item item) {
int key = i1tem.hashCode();
Node pred, curr;

try { Start at the head and lockiit
‘pred = this.head;
>2:ﬁg'logtéafnextﬁ:::,g—-Lockthecunentnode
.curr.lock();)
—_— e Traverse the list and
) remove the item
— On the
Hfinally { J::::=§\ next slide!
curr.unlock(Q); Make sure that the
_ pred.unlock(); locks are released

Remove Method

while (curr.key <= key) {——— Search key range
if (item == curr.item) {
pred.next = curr.next ;J If item found,

return true; remove the node

J
pred.unlock();
pred = curr; \\

curr = curr.next;
curr.lock();

Unlock pred and
lock the next node

}
[_return false;—— Return falseifthe elementis not present

Why does this work?

e Toremove node e

— Node e must be locked

— Node €’s predecessor must be locked
e Therefore, if you lock a node

— ltcan’t be removed

— And neither can its successor

e Toaddnodee
— Must lock predecessor
— Must lock successor

e Neither can be deleted

— Is the successor lock actuallyrequired?

Drawbacks

e Hand-over-hand locking is sometimes better than coarse-grained locking
— Threads cantraverse in parallel
— Sometimes, it’s worse!

e However, it’s certainly not ideal

— Inefficient because many locks must be acquired and released

e How can we do better?

Optimistic Synchronization

e Traverse the list without locking!

Add Found the

node cl! position!

Optimistic Synchronization: Traverse without Locking

* Once the nodes are found, try to lock them What could
e Check that everything is ok gowrong...?

Add Lock them!
node c!

Is everything ok?

Optimistic Synchronization: What Could Go Wrong?

e Another thread may lock nodes a and b and remove b before node cis

added = If the pointer from node b is set to node ¢, then node c is not
added to the list!

Add Remove b!

= e

Optimistic Synchronization: Validation #1

e How can this be fixed?

e After locking node b and node d, traverse the list again to verify that b is
still reachable

(L= G351

Add

node c! Node b can still

be reached!

Optimistic Synchronization: What Else Could Go Wrong?

e Another thread may lock nodes b and d and add a node b’ before node ¢
is added = By adding node c, the addition of node b’ is undone!

Add Add b’!

o

Optimistic Synchronization: Validation #2

e How can this be fixed?

e After locking node b and node d, also check that node b still points to
node d!

(L =I5~

Add

ode c! The pointer is

still correct...

Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
Node node = head;
while (node.key <= pred.key) {

[1-1: (node == pred)]> If pred is reached,
return pred.next == curr; test if the

node = node.next;)
1 successor is curr

return false; L
} i e Predecessor notreachable

Optimistic Synchronization: Remove

private boolean remove(Item 1tem) {

int key = item.hashCode() ;

while (true) {1
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= kev)

[11: (item == curr. 1tem)]7 Stop if we find the item
break;

pred = curr;
curr = curr.next;

}

Retry on synchronization
conflict

Optimistic Synchronization: Remove

o Lock both nod
pred.lTock(); Curr.1ock();f====="” ock both nodes
if (validate(pred,curr)) {r———— cCheckfor

[1'1: (curr.item == 1'teflsynchronization conflicts
pred.next = curr.next;
return true;
} else {
return false;
}
}
(1 finally {
pred.unlock();
curr.unlock(Q);

Remove node if
targetfound

1 Always unlock the nodes
\.

Optimistic Synchronization

Why is this correct?

— If nodes b and c are both locked, node b still accessible, and node c still the
successor of node b, then neither b nor c will be deleted by another thread

— This means thatit’s ok to delete node c!

Why is it good to use optimistic synchronization?
— Limited hot-spots: no contention on traversals
— Fewer lock acquisitionsand releases

e Whenis it good to use optimistic synchronization?

— When the cost of scanning twice without locks is less than the cost of
scanning once with locks

e (Can we do better?
— It would be better to traverse the list only once...

Lazy Synchronization

e Keyinsight
— Removing nodes causes trouble
— Do it “lazily”

e How can we remove nodes “lazily”?
— First perform a logical delete: Mark current node as removed (new!)

—>([13> — (3>

— Then perform a physical delete: Redirect predecessor’s next (as before)

Lazy Synchronization

e All Methods

— Scan through locked and marked nodes
— Removing a node doesn’t slow down other method calls...

e Note that we muststill lock pred and curr nodes!

e How does validation work?

— Check that neither pred nor curr are marked
— Check that pred pointsto curr

Lazy Synchronization

e Traverse the list and then try to lock the two nodes
e Validate!
e Then, mark node c and change the predecessor’s next pointer

Remove Check that b and c
node c! are not marked and
that b pointsto c

Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {

return

Ilpred.marked && !curr.marked

pred.next == curr;

\/‘

Predecessor still

points to current

&&

Nodes are not
logically removed

Lazy Synchronization: Remove

public boolean remove(Item item) {
int key = i1tem.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

}

This is the same as before!

Lazy Synchronization: Remove

try {

pred.lock(); curr.lock();

if (validate(pred, curr)) {

curr.marked = true:

pred.next =
return true;
} else {

return false;

}

}
} finally {

pred.unlock();
curr.unlock(Q;

[1f (curr.item ==

}
}
}

curr.next;

Check for

synchronization conflicts

If the targetis found,
mark the node and

remove it

Lazy Synchronization: Contains

public boolean contains(Item item) {
int key = i1tem.hashCode();

Node curr = this.head; : :
fwhile Ccurr.key < key) {— Traverse without locking

curr = curr.next; (nodes may have been
\} removed)

return curr.item == item & & !curr.marked;

\/

Is the element present and not marked?

Evaluation

e Good
— Thellist is traversed only once without locking
— Note that contains() doesn’t lock at all!

— Thisis nice because typically contains() is called much more often than add()
or remove()

— Uncontended callsdon’t re-traverse
e Bad

— Contended add() and remove() calls do re-traverse
— Trafficjam if one thread delays

e Traffic jam?

— If one thread gets the lock and experiences a cache miss/page fault, every
other thread that needs the lockis stuck!

— We need to trust the scheduler....

Reminder: Lock-Free Data Structures

e |f we want to guarantee that some thread will
eventually complete a method call, even if other
threads may halt at malicious times, then the
implementation cannot use locks!

e Next logical step: Eliminate locking entirely!
e Obviously, we must use some sort of RMW method
e Let’s use compareAndSet() (CAS)!

Remove Using CAS

e First, remove the node logically (i.e., mark it)
e Then, use CAS to change the next pointer
e Does this work...?

Remove
node c!

Remove Using CAS: Problem

e Unfortunately, this doesn’t work!

* Another node d may be added before node c is physically removed
e Asaresult, node dis not added to the list...

Solution

e Mark bit and next pointer are “CASed together”

e This atomic operation ensures that no node can cause a conflict by adding
(or removing) a node at the same position in the list

W %

Remove

node c! has been
@ Q removed!

Solution

e Such an operation is called an atomic markable reference
— Atomicallyupdate the mark bit and redirect the predecessor’s next pointer

e |nlJava, there’s an AtomicMarkableReference class
— In the package Java.util.concurrent.atomic package

Updated atomically

III n,
*
.

-

Reference mark bit

7/112

Changing State

[p rivate Object ref; The reference to the next
private boolean mark; Object and the mark bit

public synchronized boolean compareAndSet(
Object expectedRef, Object updateRef,
boolean expectedMark, boolean updatemark) {

it (ref == expectedRef && mark == expectedMark) {

ref = updateref; \/
mark = updatemark;
} If the referenceand the mark are as
} expected, update them atomically

Removing a Node

e |ftwo threads want to delete the nodes b and ¢, both b and c are marked
e The CAS of the red thread fails because node b is marked!
e (If node b is not marked, then b is removed first and there is no conflict)

P Ve remove
node b! node c!

Traversing the List

e (Question: What do you do when you find a “logically” deleted node in
your path when you’re traversing the list?

7/115

Lock-Free Traversal

e |falogically deleted node is encountered, CAS the predecessor’s next
field and proceed (repeat as needed)

EEEERECUD CoGECCEE

CAS!

Performance

e The throughput of the presented techniques has been measured for a
varying percentage of contains() method calls

— Using a benchmark on a 16 node shared memory machine

Ops/sec (32 threads)

8-106 i Lock-free
i M Lazy
: __-;,'/""”.'/’V :
e Rl DR SRR e |
106 W~ S | Coarse Grained
G S———& & b Fine Grained

0 10 20 30 40 50 60 70 8 90
% contains()

Low Ratio of contains()

e [fthe ratio of contains() is low, the lock-free linked list and the linked list
with lazy synchronization perform well even if there are many threads

Ops/sec (50% read)

35106 T T T T T T
X
3-10° | K >|< >|<>K>1< 1 Lock-free
2.5-10 >K>K XK ./.._..—:.%.-..._._\,‘.,,_._.?"".‘"w-" .‘\._._.‘; Lazy
2106 | - K]
,""_.»»'—" K
15106 M~ l
m
1106 X 1
5105 | L]
t~— ., —+—+—+—+—+—F—+—+—T—= Coarse Grained
OB D DD BB B——D—D Fine Grained
0 5 10 15 20 25 30

Threads

High Ratio of contains()

e |f the ratio of contains() is high, again both the lock-free linked list and the
linked list with lazy synchronization perform well even if there are many
threads

Ops/sec (90% reads)

1.2-107 T T T T ! !

1-107 | >|<>K>'<>'< % I
i X . Ry

8-10° ./,.l.-_'/-. "“I\l_i; = %%i Lock-free

X m g W |az

6-10° - ﬁ,;:-l"' - . !

4108
M

2-106 -
oo oo S S5 5 Coarse Grained
o— 0o oottt o— o — o Fine Grained
0 5 10 15 20 25 30

Threads

“To Lock or Not to Lock”

e Locking vs. non-blocking: Extremist views on both sides

e |tis nobler to compromise by combining locking and non-blocking
techniques

— Example: Linked list with lazy synchronization combinesblockingadd() and
remove() and a non-blocking contains()

— Blocking/non-blockingis a property of a method

Linear-Time Set Methods

e We looked at a number of ways to make highly-concurrent list-based sets
— Fine-grained locks
— Optimistic synchronization
— Lazy synchronization
— Lock-free synchronization

e What’s not so great?

— add(), remove(), contains() take time linearin the set size

e \We want constant-time methods! How...?

— At least on average...

Hashing

e A hash function maps the items to integers
— h:items — integers
e Uniformly distributed

— Different items “most likely” have different hash values

e InJavathere is a hashCode() method

Sequential Hash Map

e The hash table is implemented as an array of buckets, each pointing to a

list of items
—
0 e 16| 4 | 28
< 1 e » 9
buckets
2 [h(k) = k mod 4
3¢ " 7 - " 15
N

e Problem: If many items are added, the lists get long = Inefficient
lookups!

e Solution: Resize!

Resizing

The array size is doubled and the hash function adjusted

\ 4

16

"l 28

" 15

Grow the array

|h(k)=kmod8|]

New hash function

Resizing

e Some items have to be moved to different buckets!

0 ——| 16 | —
1 ——{ 9

) | h(k) = k mod 8
3 —

4 ~——1 4 |- 28

5

6

74— 7 | —1—] 15

Hash Sets

e Ahash set implements a set object

— Collection of items, no duplicates
— add(), remove(), contains() methods

e More coding ahead! L 0,0

Simple Hash Set

public class SimpleHashSet

{

protected LockFreeList[] table;— Array of lock-freelists

public SimpleHashSet(int

. Initial size
capacityf 1

table = new LockFreeList[capacity];

[for (int i

0; i < capacity; i++) Initialization
new LockFreeList();

table[1]
}

public boolean add(Object key) f{

int hash = key.hashCode() % table.length;
return table[hash].add(key);

~_—

Use hash of object to pick a bucket
and call bucket’s add() method

Simple Hash Set: Evaluation

e Wejustsawa
— Simple
— Lock-free

— Concurrent

hash-based set implementation
e Butwe don’t know how to resize...

e |sResizing really necessary?

— Yes, since constant-time method calls require constant-length buckets and a
table size proportional to the set size

— As the set grows, we must be able to resize

Set Method Mix

Typical load
— 90% contains()
— 9% add ()

— 1% remove()

e Growing is important, shrinking not so much

e \When do we resize?

e There are many reasonable policies, e.g., pick a threshold on the number
of items in a bucket

e Global threshold
— When, e.g., 2 % buckets exceed this value
e Bucket threshold

— When any bucket exceeds this value

Coarse-Grained Locking

e |f there are concurrent accesses, how can we safely resize the array?

e As with the linked list, a straightforward solution is to use coarse-grained
locking: lock the entire array!

e This is very simple and correct
e However, we again get a sequential bottleneck...

e How about fine-grained locking?

Fine-Grained Locking

e Each lock is associated with one bucket

At 0 4 |- 8

O- 1 —— 9| 17
2 | h(k) = k mod 4
31— 7 | 1] 11

e After acquiring the lock of the list, insert the item in the list!

Fine-Grained Locking: Resizing

Acquire all locks in ascending order and make sure that the table
reference didn’t change between resize decision and lock acquisition!

0 ——| 4|
1 e ~90
2

3 7 e

1 17

[

Table reference
didn’t change?

\ 4

11

| h(k) = k mod 4

Fine-Grained Locking: Resizing

e Allocate a new table and copy all elements

A (> [8
0 — 8
o O | oe—F—— 17Z
A 1 b= 9| 117
1 | h(k) = k mod 4
— 2
| 7—le== 11
A_d 3 11
4 4
5
6
7 7

Fine-Grained Locking: Resizing

Stripe the locks: Each lock is now associated with two buckets

Update the hash function and the table reference

1 17

1 11

| h(k) = k mod 8

Observations

e We grow the table, but we don’t increase the number of locks
— Resizingthe lock array is tricky ...
e We use sequential lists (coarse-grained locking)

— No lock-free list
— If we're locking anyway, why pay?

Fine-Grained Hash Set

public class FGHashSet {
protected RangeLock[] Tock;f— Array of locks
protected List[] table; - Array of buckets

public FGHashSet(int capacity) {
table = new List[capacity];
lock = new RangeLock[capacity];:

(for (int i = 0; i < capacity; i++){ > Initiallythe same
lock[1] = new RangeLock() ; number of locks
table[1] = new LinkedList(); and buckets

G

Fine-Grained Hash Set: Add Method

public boolean add(object key) { Acquire the
[1’ nt keyHash = key.hashcode() % lock.length;|rightlock

synchronized(lock[keyHash]) {
[1nt tableHash = key.hashCode() % tab1e.1engthﬂ

return table[tableHash].add(key);

} \/
} Call the add() method of
the right bucket

Fine-Grained Hash Set: Resize Method

public void resize(int depth, List[] oldTablep {
[synchronized (lock[depth]) { T
if (oldTable == this.table) {

1nt next = depth +

it (next < Tock. 1ength)
resize(next, oldTable);

else
sequentialResize();

Resize() calls
resize(0,this.table)

Acquire the next

lock and check

that nooneelse
has resized

Recursively acquire

the next lock
} Once the locks are

¥ acquired, do the work

Fine-Grained Locks: Evaluation

e \We can resize the table, but not the locks

e |tisdebatable whether method calls are constant-time in presence of
contention ...

e Insight: The contains() method does not modify any fields
— Why should concurrent contains() calls conflict?

Read/Write Locks

public interface ReadwriteLock {
Lock readLock() ;—— Returnthe associated read lock

Lock writeLock();!

1 Return the associated write lock

Lock Safety Properties

e No thread may acquire the write lock
— while any thread holds the write lock
— orthe read lock

e No thread may acquire the read lock

— while any thread holds the write lock

e Concurrent read locks OK

e This satisfies the following safety properties
— If readers > 0 then writer == false
— If writer = true then readers ==

Read/Write Lock: Liveness

e How do we guarantee liveness?

— If there are lots of readers, the writers may be locked out!

e Solution: FIFO Read/Write lock
— As soon as a writer requests a lock, no more readers are accepted
— Current readers “drain” from lock and the writers acquire it eventually

Optimistic Synchronization

e Whatif the contains() method scans without locking...?

e Ifit finds the key I scuss

— |tis ok to return true! RRER I HETTUTe

— Actuallyrequires a proof...

e Whatif it doesn’t find the key?
— It may be a victim of resizing...
— Get aread lockand try again!

— This makes sense if it is expected (?) that the key is there and resizes are
rare...

— Better: Check if the table size is the same before and after the method call!

Stop The World Resizing

e Theresizing we have seen up till now stops all concurrent operations
e (Can we design a resize operation that will be incremental?
e We need to avoid locking the table...

How...?
e We want a lock-free table with incremental resizing!

Lock-Free Resizing Problem

e |norder to remove and then add even a single item, “single location CAS”
is not enough...

0 ——{ 16 [[]

1 1 9 We need to extend the table!
2

3 7 | ° | 15

4(e =]4 . 28

5

6

7

Idea: Don’t Move the Items

e Move the buckets instead of the items!
e Keep all items in a single lock-free list
e Buckets become “shortcut pointers” into the list

16| 1 4 |*]28| — 5

-

Recursive Split Ordering

e Example: The items 0to 7 need to be hashed into the table
e Recursively split the list the buckets in half:

1/4 1/2 3/4

o [+ 4 |+ 2 |4 6 [+ 1

v
U
w
~

7

wwpi{

e The list entries are sorted in an order that allows recursive splitting

How...?

Recursive Split Ordering

e Note that the least significant bit (LSB) is O in the first half and 1 in the
other half! The second LSB determines the next pointers etc.

LSB =0 LSB=1
A A
| |

0 | 4 |+ 2 |+ 6 | 1 |'+1 5 | 3 | 7
— | J \ J \ J |
19 | ! 4 i i
1 LSB =00 LSB =10 LSB =01 LSB =11
e
3

Split-Order

e |fthetablesizeis 2'"

— Bucket b contains keys k = b mod 2!
— The bucket index consists of the key's i least significant bits

e When the table splits:
— Some keys stay (b = k mod 2+1)
— Some keys move (b+2' = k mod2i+1)

e If a key moves is determined by the (i+1)t bit
— counting backwards

A Bit of Magic

e We need to map the real keys to the split-order
e Look at the reversed binary representation of the keys and the indices
e The real keys:

0 1 2 3 4 5 6 7
o0 (Lool,. o010 110 001 101 011 111
e Split-order: Real key 1 is at index 4!
0 4 2 6 1 5 3 7

000 001 010 011 100 101 110 111

e Justreverse the order of the key bits in order to get the index!

Split Ordered Hashing

e Afteraresize, the new pointers are found by searching for the right index

Order according to reversed bits

010 011 101

2 pointers to some nodes!

e A problem remains: How can we remove a node by means of a CAS if two
sources point to it?

Sentinel Nodes

Solution: Use a sentinel node for each bucket

16 | 4;1/:j!lll*

We want a sentinel key for i

— before all keys that hash to bucket i
— after all keys that hash to bucket (i-1)

15

Initialization of Buckets

e We can now split a bucket in a lock-free manner using two CAS() calls
e Example: We need to initialize bucket 3 to split bucket 1!

16=7—-/9L 7 T 15

wwpol

Adding Nodes

Example: Node 10 is added

First, bucket 2 (= 10 mod 4) must be initialized, then the new node is

added

10

Lo

15

Recursive Initialization

e |tis possible that buckets must be initialized recursively

e Example: When node 7 is added, bucket 3 (=7 mod 4) is initialized and
then bucket 1 (=3 mod 2) is also initialized

12 |+

wwpol
(0.0}

n = number of nodes

Note that = log n empty buckets may be initialized if one node is added,
but the expected depth is constant!

Lock-Free List

private int makeRegularKey(int key) {

return reverse(key | 0x80000000) ;7 ~ethigh-orderbit
} to 1 and reverse

private int makeSentinelKey(int key) {

return reverse(key);r— oimplyreverse
} (high-order bit s 0)

Split-Ordered Set

public class soSet{ B) . _ .
protected LockFreeList[] table;[r Thisis the lock-free list

"protected AtomicInteger tablesize;) (cldes116-124)with
_protected AtomicInteger setSize; minor modifications
Track how much of

the tableis used and
the set size so that

pubTic soSet(int capacity) {)
table = new LockFreeList[capacity];
table[0] = new LockFreeList();
tableSize = new AtomicInteger(l); we know when to

_ SetSize = new AtomicInteger(0); resize
} \/_)

Initially use 1 bucket
and the sizeis zero

Split-Ordered Set: Add

pub11c boolean add(Object object) { _
(int hash = object.hashCode();]7P|ckabucket
int bucket = hash % tableSize.get(); Non-sentinel

int key = makeRegularkey(hash);— split-ordered key
LockFreeList list = getBucketList(bucket);

= rnglit %ﬁcslg?w — Get pointer to
resizeCheck () ; ’ Try to add with bucket’s sentinel,
return trues reversed key initializing if

} Resize if necessary

necessary

Recall: Resizing & Initializing Buckets

e Resizing
— Divide the set size by the total number of buckets
— If the quotient exceeds a threshold, double the table size up to a fixed limit

e |Initializing Buckets
— Buckets are originally null
— If you encounter a null bucket, initializeit

— Go to bucket’s parent (earlier nearby bucket) and recursively initialize if
necessary

— Constant expected work!

Split-Ordered Set: Initialize Bucket

public void 1nitializeBucket(int bucket) {

(int parent = getParent(bucket); Find parent,
if (table[parent] == null)

initializeBucket(parent); recursively

k y) ° °

1nt key = makeSentinelKey(bucket) ; e e e
‘table[bucket] = new
LockFreeList(table[parent], key) ;

Prepare key for
new sentinel

\

Insertsentinel if not presentand
return reference to rest of list

Correctness

e Split-ordered set is a correct, linearizable, concurrent set
implementation

e Constant-time operations!
- It takes no more than O(1) items between two dummy nodes on average

- Lazy initialization causes at most O(1) expected recursion depth in
initializeBucket()

Empirical Evaluation

Evaluation has been performed on a 30-processor Sun Enterprise 3000
Lock-Free vs. fine-grained (Lea) optimistic locking

In a non-multiprogrammed environment

10° operations: 88% contains(), 10% add(), 2% remove()

No work: Busy:
E lock-free qg)
< <
o o
@) @)

lock-free
o, /%WC
ocking locking

threads threads

Empirical Evaluation

Expected bucket length

The load factor is the capacity
of the individual buckets

Varying The Mix

Increasing the number of updates

/_/\/mck-free

locking

ops/time

M

Load factor

lock-free

Nlocking

More updates

ops/time

More reads

Additional Performance

e Additionally, the following parameters have been analyzed:

— The effects of the choice of locking granularity
— The effects of the bucket size

Number of Fine-Grain Locks

2500

2000

1500

ops/ms

1000

500

(Lea = fine-grained optimistic locking)
. B B- . - . Lea. 64 locks .
-) o~ . # Lea, 128 locks
g TR - « Lea,32locks
' J?‘i : "-. e : =
~ J "-.xn‘
5 x R — Xy Lea, 16 locks
/A
i :Jr}l,. e _
/ TN
7 T ——————— Lea. 8 locks
*/J -© Lea, 256 locks
[i _.D- = |
. R . 7
a— L = - o o] o =
p— 1 o = Wy (=] -
threads

80

7/165

Lock-free vs. Locks

ops/ms

5500
5000

4500

3000
2500
2000

1500

Lea

1
—
et

20 +

30 F

threads

50

60 +

70

7/166

Hash Table Load Factor

6000 r

(load factor = nodes per bucket)
5000 """ New, load factor=1 —— _
New, load factor=4 ---=--—-
- - K
4000 New, load factor=8 =
- / . w4 New,load factor=12 ~ »
= ' N _ A
z 3000 F i . X aee Iea, load factor=1 o--]
c ﬁ:‘ J:" ol : O m -
i’ P | lea, load factor=4 e
000 | o o0 e e o e |
A A e® © 9. ® - --e Lea,load factor=8 o -
J..' ,ﬂ.-
:,/faa 00RO g 0 eq, load factor=12 0
1000 |- /&7 §
[], 1 1 1 1 1 | | 1 |
° 2 & & § 8 8 R 8 8
threads

71167

Varying Operations

ops/ms

8000 F I] I | 1] I] I] I]
New, 8 threads g
7000 New, 16 threads X -
G New, 32 threads = x
6000 - New, 48 threads = }
5000 | % lea, 8 threads - - ©-
- B ‘- 7
b & lea. 16 threads .
4000 F e Lea, 32 threads o -~ -
PR e
! e G lea, 48 threads o -
. I U A - e _ -
3000 1 it e~ 1;‘-:I -E a S I -] il
i T R e e $e-eeee oo K ¥
2000 P04 I
b Sl N
o o
1000 R T
U | 1 | 1 1 I | 1 1 1 1 1
E &8 8 BE § 2 8 § &8 = 2 Z Z Z
o = = = <= = <= = = = — ! o’ .
S & S = — S — S — = — =~ S & &
= st r ! = sl O —- 0 =3 o o0 ~ et

9% of insert; % of delete; % of find

7/168

Conclusion

e Concurrent resizing is tricky
e Lock-based

— Fine-grained

— Read/write locks

— Optimistic
e Lock-free

— Buildson lock-free list

Summary

e We talked about several locking mechanisms

e |n particular we have seen
— TAS& TTAS
— Alock & backoff lock
— MCS lock & abortable MCS lock

e We also talked about techniques to deal with concurrency in linked lists
— Hand-over-handlocking
— Optimistic synchronization
— Lazy synchronization
— Lock-free synchronization
e Finally, we talked about hashing
— Fine-grained locking
— Recursive split ordering

Credits

e The TTAS lock is due to Kruskal, Rudolph, and Snir, 1988.

e Tom Anderson invented the ALock, 1990.

e The MCS lock is due to Mellor-Crummey and Scott, 1991.

e The first lock-free list algorithms are credited to John Valois, 1995.

e The lock-free list algorithm discussed in this lecture is a variation of
algorithms proposed by Harris, 2001, and Michael, 2002.

* The lock-free hash set based on split-ordering is by Shalev and Shavit,
2006.

That’s all, folks!

Questions & Comments?

Eidgendasiache Technrische Hochachule Zidrich
Swiss Federal Institute ofT:l:hn-ulug,' Furich

